【題目】某度假酒店為了解會(huì)員對(duì)酒店的滿(mǎn)意度,從中抽取50名會(huì)員進(jìn)行調(diào)查,把會(huì)員對(duì)酒店的“住宿滿(mǎn)意度”與“餐飲滿(mǎn)意度”都分為五個(gè)評(píng)分標(biāo)準(zhǔn):1分(很不滿(mǎn)意);2分(不滿(mǎn)意);3分(一般);4分(滿(mǎn)意);5分(很滿(mǎn)意).其統(tǒng)計(jì)結(jié)果如下表(住宿滿(mǎn)意度為
,餐飲滿(mǎn)意度為
)
![]()
(1)求“住宿滿(mǎn)意度”分?jǐn)?shù)的平均數(shù);
(2)求“住宿滿(mǎn)意度”為3分時(shí)的5個(gè)“餐飲滿(mǎn)意度”人數(shù)的方差;
(3)為提高對(duì)酒店的滿(mǎn)意度,現(xiàn)從
且
的會(huì)員中隨機(jī)抽取2人征求意見(jiàn),求至少有1人的“住宿滿(mǎn)意度”為2的概率.
【答案】(1)3.16(2)2(3)
.
【解析】
(1)求出“住宿滿(mǎn)意度”分?jǐn)?shù)的總分,然后除以總?cè)藬?shù)
,求得平均數(shù).(2)利用方差的計(jì)算公式,計(jì)算出所求的方差.(3)符合條件的所有會(huì)員共
人,其中“住宿滿(mǎn)意度”為
的有
人,“住宿滿(mǎn)意度”為
的有
人,利用列舉法和古典概型概率計(jì)算公式,計(jì)算出所求的概率.
(1)
(2)當(dāng)“住宿滿(mǎn)意度”為3分時(shí)的5個(gè)“餐飲滿(mǎn)意度”人數(shù)的平均數(shù)為
,
其方差為
(3)符合條件的所有會(huì)員共6人,其中“住宿滿(mǎn)意度”為2的3人分別記為
,“住宿滿(mǎn)意度”為3的3人分別記為
.
從這6人中抽取2人有如下情況,
,共15種情況.所以至少有1人的“住宿滿(mǎn)意度”為2的概率
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
:
(
)的離心率為
,
,
,
,
的面積為
.
(1)求橢圓
的方程;
(2)設(shè)
是橢圓
上的一點(diǎn),直線
與
軸交于點(diǎn)
,直線
與
軸交于點(diǎn)
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的右焦點(diǎn)為
,設(shè)直線
與
軸的交點(diǎn)為
,過(guò)點(diǎn)
且斜率為
的直線
與橢圓交于
兩點(diǎn),
為線段
的中點(diǎn).
![]()
(1)若直線
的傾斜角為
,求
的值;
(2)設(shè)直線
交直線
于點(diǎn)
,證明:直線
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)求函數(shù)
在點(diǎn)
處的切線方程;
(2)求函數(shù)
在
上的值域;
(3)若存在
,使得
成立,求
的最大值.(其中自然常數(shù)
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,.
(1)當(dāng)
為何值時(shí),直線
是曲線
的切線;
(2)若不等式
在
上恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)據(jù)
是宜昌市
個(gè)普通職工的年收入,設(shè)這
個(gè)數(shù)據(jù)的中位數(shù)為
,平均數(shù)為
,方差為
,如果再加上世界首富的年收入
,則這
個(gè)數(shù)據(jù)中,下列說(shuō)法正確的是( )
A. 年收入平均數(shù)可能不變,中位數(shù)可能不變,方差可能不變
B. 年收入平均數(shù)大大增大,中位數(shù)可能不變,方差變大
C. 年收入平均數(shù)大大增大,中位數(shù)可能不變,方差也不變
D. 年收入平均數(shù)大大增大,中位數(shù)一定變大,方差可能不變
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的離心率為
,過(guò)橢圓的焦點(diǎn)且與長(zhǎng)軸垂直的弦長(zhǎng)為1.
(1)求橢圓C的方程;
(2)設(shè)點(diǎn)M為橢圓上第一象限內(nèi)一動(dòng)點(diǎn),A,B分別為橢圓的左頂點(diǎn)和下頂點(diǎn),直線MB與x軸交于點(diǎn)C,直線MA與y軸交于點(diǎn)D,求證:四邊形ABCD的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)暗箱中有形狀和大小完全相同的3只白球與2只黑球,每次從中取出一只球,取到白球得2分,取到黑球得3分.甲從暗箱中有放回地依次取出3只球.
(1)求甲三次都取得白球的概率;
(2)求甲總得分ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列五個(gè)命題:
①“
”是“
為R上的增函數(shù)”的充分不必要條件;
②函數(shù)
有兩個(gè)零點(diǎn);
③集合
,
,從A,B中各任意取一個(gè)數(shù),則這兩數(shù)之和等于4的概率是
;
④動(dòng)圓C既與定圓
相外切,又與y軸相切,則圓心C的軌跡方程是
;
⑤若對(duì)任意的正數(shù)x,不等式
恒成立,則實(shí)數(shù)a的取值范圍是
.
其中正確的命題序號(hào)是________.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com