分析 由題意可得$\frac{λ}{a-c}$>$\frac{1}{a-b}$+$\frac{1}{b-c}$,即 λ>(a-c)($\frac{1}{a-b}$+$\frac{1}{b-c}$)成立.由基本不等式可得右邊的最小值等于4,故λ>4.
解答 解:a>b>c,即有a-b>0,b-c>0,a-c>0,
不等式$\frac{1}{a-b}$+$\frac{1}{b-c}$+$\frac{λ}{c-a}$<0,
即為$\frac{λ}{a-c}$>$\frac{1}{a-b}$+$\frac{1}{b-c}$,
即λ>(a-c)($\frac{1}{a-b}$+$\frac{1}{b-c}$)成立.
把a-c=a-b+b-c,代入上式可得,
[(a-b)+(b-c)}($\frac{1}{a-b}$+$\frac{1}{b-c}$)=2+$\frac{b-c}{a-b}$+$\frac{a-b}{b-c}$≥2+2$\sqrt{\frac{b-c}{a-b}•\frac{a-b}{b-c}}$=4,
當且僅當a-b=b-c時,取得最小值4.
則λ>4,
故答案為:(4,+∞).
點評 本題主要考查基本不等式的應用,函數(shù)的成立問題,注意運用轉化思想,考查運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 120° | B. | 136° | C. | 144° | D. | 150° |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com