【題目】(1+tan1°)(1+tan2°)…(1+tan43°)(1+tan44°)= .
【答案】![]()
【解析】
試題因?yàn)?/span>tanA+tanB=tan(A+B)(1-tanAtanB),且A+B=45°,即tanA+tanB=1-tanAtanB,
所以(1+tanA)(1+tanB)=tanA+tanB+1+tanAtanB=1-tanAtanB+1+tanAtanB=2,
即(1+tanA)(1+tanB)=2.
因?yàn)?/span>1°+44°=45°,2°+43°=45°,…,22°+23°=45°,
所以(1+tan1°)(1+tan44°)=2,(1+tan2°)(1+tan43°)=2,…,(1+tan22°)(1+tan23°)=2,
所以原式=2×2×2×…×2=222.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2022年北京冬奧會(huì)的申辦成功與“3億人上冰雪”口號(hào)的提出,將冰雪這個(gè)冷項(xiàng)目迅速炒“熱”.北京某綜合大學(xué)計(jì)劃在一年級(jí)開設(shè)冰球課程,為了解學(xué)生對(duì)冰球運(yùn)動(dòng)的興趣,隨機(jī)從該校一年級(jí)學(xué)生中抽取了100人進(jìn)行調(diào)查,其中女生中對(duì)冰球運(yùn)動(dòng)有興趣的占
,而男生有10人表示對(duì)冰球運(yùn)動(dòng)沒有興趣額.
(1)完成
列聯(lián)表,并回答能否有
的把握認(rèn)為“對(duì)冰球是否有興趣與性別有關(guān)”?
有興趣 | 沒興趣 | 合計(jì) | |
男 | 55 | ||
女 | |||
合計(jì) |
(2)已知在被調(diào)查的女生中有5名數(shù)學(xué)系的學(xué)生,其中3名對(duì)冰球有興趣,現(xiàn)在從這5名學(xué)生中隨機(jī)抽取3人,求至少有2人對(duì)冰球有興趣的概率.
附表:
| 0.150 | 0.100 | 0.050 | 0.025 | 0.010 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)令
,判斷g(x)的單調(diào)性;
(2)當(dāng)x>1時(shí),
,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,若在其定義域內(nèi)存在實(shí)數(shù)
滿足
,則稱函數(shù)
為“局部奇函數(shù)”,若函數(shù)
是定義在
上的“局部奇函數(shù)”,則實(shí)數(shù)
的取值范圍是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列
的前
項(xiàng)和為
,正項(xiàng)等比數(shù)列
中,
,
,則
( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
( x R ,且 e 為自然對(duì)數(shù)的底數(shù)).
⑴ 判斷函數(shù) f x 的單調(diào)性與奇偶性;
⑵是否存在實(shí)數(shù) t ,使不等式
對(duì)一切的 x R 都成立?若存在,求出 t 的值,若 不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在第二屆烏鎮(zhèn)互聯(lián)網(wǎng)大會(huì)中, 為了提高安保的級(jí)別同時(shí)又為了方便接待,現(xiàn)將其中的五個(gè)參會(huì)國的人員安排酒店住宿,這五個(gè)參會(huì)國要在
、
、
三家酒店選擇一家,且每家酒店至少有一個(gè)參會(huì)國入住,則這樣的安排方法共有
A.
種B.
種
C.
種D.
種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
上一點(diǎn)
關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為
,
為其右焦點(diǎn),若
,設(shè)
,且
,則該橢圓的離心率
的取值范圍是( )
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)舉行了一次“數(shù)學(xué)基礎(chǔ)知識(shí)競(jìng)賽”活動(dòng).為了了解本次競(jìng)賽學(xué)生的成績情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為
)進(jìn)行統(tǒng)計(jì).按照
的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在
的數(shù)據(jù)).
![]()
(1)求樣本容量
和頻率分布直方圖中的
,
的值;
(2)在選取的樣本中,從競(jìng)賽成績?cè)?/span>80分以上(含80分)的學(xué)生中隨機(jī)抽取2名學(xué)生參加“市級(jí)數(shù)學(xué)基礎(chǔ)知識(shí)競(jìng)賽”,求所抽取的2名學(xué)生中恰有一人得分在
內(nèi)的概率.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com