【題目】2020年寒假是特殊的寒假,因?yàn)橐咔槿w學(xué)生只能在家進(jìn)行網(wǎng)上在線學(xué)習(xí),為了研究學(xué)生在網(wǎng)上學(xué)習(xí)的情況,某學(xué)校在網(wǎng)上隨機(jī)抽取120名學(xué)生對線上教育進(jìn)行調(diào)查,其中男生與女生的人數(shù)之比為11∶13,其中男生30人對于線上教育滿意,女生中有15名表示對線上教育不滿意.
(1)完成
列聯(lián)表,并回答能否有99%的把握認(rèn)為對“線上教育是否滿意與性別有關(guān)”;
滿意 | 不滿意 | 總計(jì) | |
男生 | |||
女生 | |||
合計(jì) | 120 |
(2)從被調(diào)查中對線上教育滿意的學(xué)生中,利用分層抽樣抽取8名學(xué)生,再在8名學(xué)生中抽取3名學(xué)生,作線上學(xué)習(xí)的經(jīng)驗(yàn)介紹,其中抽取男生的個(gè)數(shù)為
,求出
的分布列及期望值.
參考公式:附:![]()
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 0.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10828 |
【答案】(1)見解析,有99%的把握認(rèn)為對“線上教育是否滿意與性別有關(guān)”.(2)見解析,![]()
【解析】
(1)根據(jù)男生與女生的人數(shù)之比為11∶13,以及總?cè)藬?shù)120,可求出男,女生總?cè)藬?shù),即可完成
列聯(lián)表,并根據(jù)獨(dú)立性檢驗(yàn)的基本思想,求出
的觀測值,對照臨界值表,即可判斷是否有把握;
(2)根據(jù)(1)可知,男生抽3人,女生抽5人,于是,離散型隨機(jī)變量
的可能取值為
,并且
服從超幾何分布,即可利用公式
,求出各概率,得到分布列,求出期望.
(1)因?yàn)槟猩藬?shù)為:
,所以女生人數(shù)為
,
于是可完成
列聯(lián)表,如下:
滿意 | 不滿意 | 總計(jì) | |
男生 | 30 | 25 | 55 |
女生 | 50 | 15 | 65 |
合計(jì) | 80 | 40 | 120 |
根據(jù)列聯(lián)表中的數(shù)據(jù),得到
的觀測值
,
所以有99%的把握認(rèn)為對“線上教育是否滿意與性別有關(guān)”.
(2)由(1)可知男生抽3人,女生抽5人,依題可知
的可能取值為
,并且
服從超幾何分布,
,即
,
.
可得分布列為
| 0 | 1 | 2 | 3 |
|
|
|
|
|
可得
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,曲線C1的極坐標(biāo)方程是
,在以極點(diǎn)為原點(diǎn)O,極軸為x軸正半軸(兩坐標(biāo)系取相同的單位長度)的直角坐標(biāo)系xOy中,曲線C2的參數(shù)方程為
(θ為參數(shù)).
(1)求曲線C1的直角坐標(biāo)方程與曲線C2的普通方程;
(2)將曲線C2經(jīng)過伸縮變換
后得到曲線C3,若M,N分別是曲線C1和曲線C3上的動點(diǎn),求|MN|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】鳳梨穗龍眼原產(chǎn)廈門,是廈門市的名果,栽培歷史已有
多年.龍眼干的級別按直徑
的大小分為四個(gè)等級,其中直徑在區(qū)間
為特級品,在
的為一級品,在
的為二級品,在
的為三級品,某商家為了解某農(nóng)場一批龍眼干的質(zhì)量情況,隨機(jī)抽取了
個(gè)龍眼干作為樣本(直徑分布在區(qū)間
),統(tǒng)計(jì)得到這些龍眼干的直徑的頻數(shù)分布表如下:
|
|
|
|
|
|
頻數(shù) | 1 |
| 29 |
| 7 |
用分層抽樣的方法從樣本的一級品和特級品中抽取
個(gè),其中一級品有
個(gè).
(1)求
、
的值,并估計(jì)這些龍眼干中特級品的比例;
(2)已知樣本中的
個(gè)龍眼干約
克,該農(nóng)場有
千克龍眼干待出售,商家提出兩種收購方案:
方案A:以
元/千克收購;
方案B:以級別分裝收購,每袋
個(gè),特級品
元/袋、一級品
元/袋、二級品
元/袋、三級品
元/袋.用樣本的頻率分布估計(jì)總體分布,哪個(gè)方案農(nóng)場的收益更高?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
,
為兩個(gè)平面,命題
:
的充要條件是
內(nèi)有無數(shù)條直線與
平行;命題
:
的充要條件是
內(nèi)任意一條直線與
平行,則下列說法正確的是( )
A.“
”為真命題B.“
”為真命題
C.“
”為真命題D.“
”為真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某手機(jī)生產(chǎn)企業(yè)為了對研發(fā)的一批最新款手機(jī)進(jìn)行合理定價(jià),將該款手機(jī)按事先擬定的價(jià)格進(jìn)行試銷,得到單價(jià)
(單位:千元)與銷量
(單位:百件)的關(guān)系如下表所示:
單價(jià) | 1 | 1.5 | 2 | 2.5 | 3 |
銷量 | 10 | 8 | 7 | 6 |
|
已知
.
(Ⅰ)若變量
,
具有線性相關(guān)關(guān)系,求產(chǎn)品銷量
(百件)關(guān)于試銷單價(jià)
(千元)的線性回歸方程
;
(Ⅱ)用(Ⅰ)中所求的線性回歸方程得到與
對應(yīng)的產(chǎn)品銷量的估計(jì)值
,當(dāng)銷售數(shù)據(jù)
對應(yīng)的殘差滿足
時(shí),則稱
為一個(gè)“好數(shù)據(jù)”,現(xiàn)從5個(gè)銷售數(shù)據(jù)中任取3個(gè),求其中“好數(shù)據(jù)”的個(gè)數(shù)
的分布列和數(shù)學(xué)期望.
參考公式:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年寒假是特殊的寒假,因?yàn)橐咔槿w學(xué)生只能在家進(jìn)行網(wǎng)上在線學(xué)習(xí),為了研究學(xué)生在網(wǎng)上學(xué)習(xí)的情況,某學(xué)校在網(wǎng)上隨機(jī)抽取120名學(xué)生對于線上教育進(jìn)行調(diào)查,其中男生與女生的人數(shù)之比為
,其中男生30人對于線上教育滿意,女生中有15名表示對線上教育不滿意.
(1)完成
列聯(lián)表,并回答能否有99%的把握認(rèn)為對“線上教育是否滿意與性別有關(guān)”;
滿意 | 不滿意 | 總計(jì) | |
男生 | |||
女生 | |||
合計(jì) | 120 |
(2)從被調(diào)查中對線上教育滿意的學(xué)生中,利用分層抽樣抽取8名學(xué)生,再在8名學(xué)生中抽取2名學(xué)生,作線上學(xué)習(xí)的經(jīng)驗(yàn)介紹,求其中抽取一名男生與一名女生的概率.
參考公式:附:![]()
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.842 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)
、
分別為雙曲線
的左、右焦點(diǎn),雙曲線
的離心率為
,點(diǎn)
在雙曲線
上,不在
軸上的動點(diǎn)
與動點(diǎn)
關(guān)于原點(diǎn)
對稱,且四邊形
的周長為
.
(1)求動點(diǎn)
的軌跡
的方程;
(2)過點(diǎn)
的直線交
的軌跡
于
,
兩點(diǎn),
為
上一點(diǎn),且滿足
,其中
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點(diǎn)
在正視圖上的對應(yīng)點(diǎn)為
,圓柱表面上的點(diǎn)
在左視圖上的對應(yīng)點(diǎn)為
,則在此圓柱側(cè)面上,從
到
的路徑中,最短路徑的長度為( )
![]()
A.
B.
C.
D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,曲線
的方程為
,以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
,點(diǎn)
,點(diǎn)
是曲線
上的動點(diǎn),
為線段
的中點(diǎn).
(1)寫出曲線
的參數(shù)方程,并求出點(diǎn)
的軌跡
的直角坐標(biāo)方程;
(2)已知點(diǎn)
,直線
與曲線
的交點(diǎn)為
,若線段
的中點(diǎn)為
,求線段
長度.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com