分析 (I)由線(xiàn)面平行的性質(zhì)可知PM∥EB,故E為PC中點(diǎn);
(II)由AE,PD為△PAC的中線(xiàn)可知N為△PAC的重心,故而ND=$\frac{1}{3}PD$,于是N到底面ACM的距離為$\frac{1}{3}$PM.代入體積公式得出體積.
解答
解:(Ⅰ)E為PC的中點(diǎn).理由如下:
連接BE,∵B,E分別為CM,PC的中點(diǎn),
∴BE∥PM,又BE?平面ABE,PM?平面ABE,
∴PM∥面ABE.
(Ⅱ)由于A(yíng)E,PD分別是△PAC的邊PC,AC上的中線(xiàn),
∴AE和PD的交點(diǎn)N為△PAC的重心,∴DN=$\frac{1}{3}$PD.
∴N到平面AMC的距離h=$\frac{1}{3}PM$=$\frac{2}{3}$.
∵B,D是MC,AC的中點(diǎn),
∴S△ABD=$\frac{1}{4}$S△ACM=$\frac{1}{4}×\frac{1}{2}×2×2=\frac{1}{2}$.
∴VB-ADN=VN-ABD=$\frac{1}{3}{S}_{△ABD}•h$=$\frac{1}{3}×\frac{1}{2}×\frac{2}{3}=\frac{1}{9}$.
點(diǎn)評(píng) 本題考查了線(xiàn)面平行的判定,棱錐的體積計(jì)算,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\sqrt{3}$ | B. | $\sqrt{6}$ | C. | $\frac{\sqrt{6}}{2}$或$\sqrt{6}$ | D. | $\sqrt{3}$或$\frac{\sqrt{6}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com