已知f(x)=
(x∈R)在區(qū)間[-1,1]上是增函數(shù).
(1)求實數(shù)a的值組成的集合A;
(2)設(shè)關(guān)于x的方程f(x)=
的兩個非零實根為x1、x2.試問:是否存在實數(shù)m,使得不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請說明理由.
(1)A={a|-1≤a≤1}. (2){m|m≥2,或m≤-2}.)
解析試題分析:(1)f'(x)=
=
,
∵f(x)在[-1,1]上是增函數(shù),∴f'(x)≤0對x∈[-1,1]恒成立,
即x2-ax-2≤0對x∈[-1,1]恒成立. ①
設(shè)
(x)=x2-ax-2,
① ![]()
![]()
-1≤a≤1,
∵對x∈[-1,1],f(x)是連續(xù)函數(shù),且只有當(dāng)a=1時,f'(-1)=0以及當(dāng)a=-1時,f'(1)=0
∴A={a|-1≤a≤1}. -6分
(2)由
=
,得x2-ax-2=0, ∵△=a2+8>0
∴x1,x2是方程x2-ax-2=0的兩實根,
∴
從而|x1-x2|=
=
.
∵-1≤a≤1,∴|x1-x2|=
≤3. 10分
要使不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立,
當(dāng)且僅當(dāng)m2+tm+1≥3對任意t∈[-1,1]恒成立,
即m2+tm-2≥0對任意t∈[-1,1]恒成立. ②
設(shè)g(t)=m2+tm-2=mt+(m2-2),
(方法一:)
②![]()
![]()
m≥2或m≤-2.
所以,存在實數(shù)m,使不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立,其取值范圍是{m|m≥2,或m≤-2}. --14分
(注:方法二: 當(dāng)m=0時,②顯然不成立; 當(dāng)m≠0時,
②
或![]()
m≥2或m≤-2.
所以,存在實數(shù)m,使不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立,
其取值范圍是{m|m≥2,或m≤-2}.)
考點(diǎn):本題主要考查集合的概念,應(yīng)用導(dǎo)數(shù)研究函數(shù)的性質(zhì)、方程的根,不等式恒成立問題。
點(diǎn)評:難題,在某區(qū)間,導(dǎo)函數(shù)值非負(fù),則函數(shù)為增函數(shù);導(dǎo)函數(shù)值非正,則函數(shù)為減函數(shù)。通過研究函數(shù)的圖象和性質(zhì),進(jìn)一步研究方程有實根的情況,這是函數(shù)與方程思想的靈活應(yīng)用。不等式恒成立問題,一般的要轉(zhuǎn)化成求函數(shù)的最值問題。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義在
上的函數(shù)
同時滿足以下條件:
①
在
上是減函數(shù),在
上是增函數(shù);
②
是偶函數(shù);
③
在
處的切線與直線
垂直.
(I)求函數(shù)
的解析式;
(II)設(shè)
,若存在
,使
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=
,其中a>0,
(Ⅰ)若a=1,求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(Ⅱ)若在區(qū)間
上,f(x)>0恒成立,求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
的圖象經(jīng)過點(diǎn)
,且在
處的切線方程是
.
(I)求
的解析式;
(Ⅱ)求
的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(![]()
R).
(1) 若
,求函數(shù)
的極值;
(2)是否存在實數(shù)
使得函數(shù)
在區(qū)間
上有兩個零點(diǎn),若存在,求出
的取值范圍;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(Ⅰ)當(dāng)
時,求證:函數(shù)
在
上單調(diào)遞增;
(Ⅱ)若函數(shù)
有三個零點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ln(1+x)-
.
(1)求f(x)的極小值; (2)若a、b>0,求證:lna-lnb≥1-
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com