【題目】在直角坐標(biāo)平面上,稱橫、縱坐標(biāo)都是有理數(shù)的點(diǎn)為有理點(diǎn).求滿足如下條件的最小正整數(shù)
:每一個(gè)圓周上含有
個(gè)有理點(diǎn)的圓,它的圓周上一定含有無(wú)窮多個(gè)有理點(diǎn).
【答案】
的最小值為3
【解析】
首先證明:若一個(gè)圓的圓周含有3個(gè)有理點(diǎn),則該圓周上一定含有無(wú)窮多個(gè)有理點(diǎn).
設(shè)平面上
的圓周上含有2個(gè)有理點(diǎn)
(
),圓心
.
由于線段
的垂直平分線過(guò)圓心
,則
由于
(
)都是有理數(shù),因此,上述關(guān)于
的二元一次方程組的解
都是有理數(shù),即
是有理點(diǎn).設(shè)有理點(diǎn)
的坐標(biāo)為![]()
其中,
(
).
則![]()
.
故點(diǎn)
(
)都在
的圓周上,即
的圓周上有無(wú)窮多個(gè)有理點(diǎn).其次,構(gòu)造一個(gè)圓周上只含有兩個(gè)有理點(diǎn)的實(shí)例.
.容易驗(yàn)證,
都在圓周
上.
若圓周
上還有不同于
的有理點(diǎn)
,
則
,即
.
因?yàn)樽蠖藶橛欣頂?shù),
為無(wú)理數(shù),所以,
.進(jìn)而
.
故
.這與
不同于
的假定矛盾.綜上所述,
的最小值為3.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
.
(Ⅰ)求函數(shù)
在點(diǎn)
點(diǎn)處的切線方程;
(Ⅱ)當(dāng)
時(shí),
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐
中,
平面
,
,
,
,
.
![]()
(1)求證:
平面
;
(2)若直線
與平面
所成的線面角的正弦值為
,求
長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓E的一個(gè)頂點(diǎn)為
,焦點(diǎn)在x軸上,若橢圓的右焦點(diǎn)到直線
的距離是3.
求橢圓E的方程;
設(shè)過(guò)點(diǎn)A的直線l與該橢圓交于另一點(diǎn)B,當(dāng)弦AB的長(zhǎng)度最大時(shí),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)當(dāng)
時(shí),求函數(shù)
在
處的切線方程;
(Ⅱ)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)
有兩個(gè)極值點(diǎn)
,不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知偶函數(shù)
滿足
且
,當(dāng)
時(shí),
,關(guān)于
的不等式
在
上有且只有200個(gè)整數(shù)解,則實(shí)數(shù)
的取值范圍為( )
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)當(dāng)
時(shí),求曲線
在點(diǎn)
處的切線方程;
(Ⅱ)當(dāng)
時(shí),求證:
對(duì)任意
成立.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com