【題目】在極坐標(biāo)系下,方程
的圖形為如圖所示的“幸運(yùn)四葉草”,又稱為玫瑰線.
![]()
(1)當(dāng)玫瑰線的
時(shí),求以極點(diǎn)為圓心的單位圓與玫瑰線的交點(diǎn)的極坐標(biāo);
(2)求曲線
上的點(diǎn)M與玫瑰線上的點(diǎn)N距離的最小值及取得最小值時(shí)的點(diǎn)M、N的極坐標(biāo)(不必寫詳細(xì)解題過程).
【答案】(1)
和
;(2)最小值為
,M,N的極坐標(biāo)分別為
,![]()
【解析】
(1)把
與
聯(lián)立,解方程組即得以極點(diǎn)為圓心的單位圓與玫瑰線的交點(diǎn)的極坐標(biāo);(2)曲線
的直角坐標(biāo)方程為
再利用數(shù)形結(jié)合求出點(diǎn)M、N的極坐標(biāo).
(1)以極點(diǎn)為圓心的單位圓為
與
聯(lián)立,得
,
所以
,因?yàn)?/span>
,所以
或
,
從而得到以極點(diǎn)為圓心的單位圓與玫瑰線的交點(diǎn)的極坐標(biāo)為
和
.
(2)曲線
的直角坐標(biāo)方程為
.
玫瑰線
極徑的最大值為2,且在點(diǎn)
取得,
連接O,
與
垂直且交于點(diǎn)
,
所以點(diǎn)M與點(diǎn)N的距離的最小值為
,
此時(shí)對應(yīng)的點(diǎn)M,N的極坐標(biāo)分別為
,
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,AB
EF,矩形ABCD所在平面和圓O所在平面垂直,已知AB=2,EF=1.
![]()
(I)求證:平面DAF⊥平面CBF;
(II)若BC=1,求四棱錐F-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市
戶居民的月平均用電量(單位:度),以
,
,
,
,
,
,
分組的頻率分布直方圖如圖.
![]()
(1)求直方圖中
的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為
,
,
,
的四組用戶中,用分層抽樣的方法抽取
戶居民,則月平均用電量在
的用戶中應(yīng)抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱
中,
是等邊三角形,
平面
是
的中點(diǎn),
是
的中點(diǎn).
![]()
(1)求證:
平面
;
(2)求證:平面
平面
;
(3)若
,求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“大眾創(chuàng)業(yè),萬眾創(chuàng)新”是李克強(qiáng)總理在本屆政府工作報(bào)告中向全國人民發(fā)出的口號.共生產(chǎn)企業(yè)積極響應(yīng)號召,大力研發(fā)新產(chǎn)品,為了對新研發(fā)的一批產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到一組銷售數(shù)據(jù)
,如表所示:
試銷單價(jià) | 4 | 5 | 6 | 7 | 8 | 9 |
產(chǎn)品銷量 | 90 | 84 | 83 | 80 | 75 | 68 |
已知
,
.
(1)已知變量
,只有線性相關(guān)關(guān)系,求產(chǎn)品銷量
(件)關(guān)于試銷單價(jià)
(元)的線性回方程
;
(2)用
表示用(Ⅱ)中所求的線性回歸方程得到的與
對應(yīng)的產(chǎn)品銷量的估計(jì)值.當(dāng)銷售數(shù)據(jù)
對應(yīng)的差的絕對值
時(shí),則將售數(shù)數(shù)
稱為一個(gè)“好數(shù)據(jù)”.現(xiàn)從6小銷售數(shù)據(jù)中任取2個(gè);求“好數(shù)據(jù)”至少有一個(gè)的概率.
(參考公式:線性回歸方程中
的最小二乘估計(jì)分別為
,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是世界上嚴(yán)重缺水的國家,城市缺水問題較為突出,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃在本市試行居民生活用水定額管理,即確定一個(gè)合理的居民月用水量標(biāo)準(zhǔn):(單位:噸),用水量不超過
的部分按平價(jià)收費(fèi),超過
的部分按議價(jià)收費(fèi),為了了解全布市民用用水量分布情況,通過袖樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照
……
分成9組,制成了如圖所示的頻率分布直方圖
![]()
(1)求頻率分布直方圖中
的值;
(2)若該市政府看望使85%的居民每月的用水量不超過標(biāo)準(zhǔn)
(噸),估計(jì)
的值,并說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱
中,
、
分別為
、
的中點(diǎn),
,
.
![]()
(1)求證:平面
平面
;
(2)若直線
和平面
所成角的正弦值等于
,求二面角
的平面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知點(diǎn)
,
,動(dòng)點(diǎn)P滿足
,記動(dòng)點(diǎn)P的軌跡為W.
(Ⅰ)求W的方程;
(Ⅱ)直線
與曲線W交于不同的兩點(diǎn)C,D,若存在點(diǎn)
,使得
成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com