【題目】如圖,在三棱柱
中,
是等邊三角形,
平面
是
的中點(diǎn),
是
的中點(diǎn).
![]()
(1)求證:
平面
;
(2)求證:平面
平面
;
(3)若
,求三棱錐
的體積.
【答案】(1)詳見解析(2)詳見解析(3)![]()
【解析】
(1)取
的中點(diǎn)為
,連接
,根據(jù)線面平行的判定定理,即可證明結(jié)論成立;
(2)先由線面垂直的判定定理,證明
面
,進(jìn)而可得面面垂直;
(3)先由題中條件求出
到平面
的距離,再由三棱錐體積公式,即可得出結(jié)果.
(1)取
的中點(diǎn)為
,連接
,
因?yàn)?/span>
分別為
的中點(diǎn),
所以
,且
,
所以
且
,則四邊形
為平行四邊形,
所以
,
又
面
,
面
,
所以
面
;
![]()
(2)因?yàn)?/span>
平面
,
面
,所以
,
又
為正三角形,
為
的中點(diǎn),所以
,
又
,
所以
面
,又
,
所以
面
,
又
面
,
所以平面
平面
.
(3)由
,
得
,
,又
,
,即
到平面
的距離為
,得![]()
,
故三棱錐
的體積為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐
中,底面
為矩形,
面
,
為
的中點(diǎn)。
(1)證明:
平面
;
(2)設(shè)
,
,三棱錐
的體積
,求A到平面PBC的距離。
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,其中
.
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)
的單調(diào)區(qū)間:
(Ⅱ)求函數(shù)
的極值;
(Ⅲ)若函數(shù)
有兩個(gè)不同的零點(diǎn),求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓
的右頂點(diǎn)為
,上頂點(diǎn)為
.已知橢圓的離心率為
,
.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線
:
與橢圓交于
,
兩點(diǎn),且點(diǎn)
在第二象限.
與
延長線交于點(diǎn)
,若
的面積是
面積的3倍,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市在進(jìn)行創(chuàng)建文明城市的活動(dòng)中,為了解居民對(duì)“創(chuàng)文”的滿意程度,組織居民給活動(dòng)打分(分?jǐn)?shù)為整數(shù).滿分為100分).從中隨機(jī)抽取一個(gè)容量為120的樣本.發(fā)現(xiàn)所有數(shù)據(jù)均在
內(nèi).現(xiàn)將這些分?jǐn)?shù)分成以下6組并畫出了樣本的頻率分布直方圖,但不小心污損了部分圖形,如圖所示.觀察圖形,回答下列問題:
![]()
(1)算出第三組
的頻數(shù).并補(bǔ)全頻率分布直方圖;
(2)請(qǐng)根據(jù)頻率分布直方圖,估計(jì)樣本的眾數(shù)、中位數(shù)和平均數(shù).(每組數(shù)據(jù)以區(qū)間的中點(diǎn)值為代表)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系下,方程
的圖形為如圖所示的“幸運(yùn)四葉草”,又稱為玫瑰線.
![]()
(1)當(dāng)玫瑰線的
時(shí),求以極點(diǎn)為圓心的單位圓與玫瑰線的交點(diǎn)的極坐標(biāo);
(2)求曲線
上的點(diǎn)M與玫瑰線上的點(diǎn)N距離的最小值及取得最小值時(shí)的點(diǎn)M、N的極坐標(biāo)(不必寫詳細(xì)解題過程).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓
(a>b>0)的左焦點(diǎn)為F,上頂點(diǎn)為B. 已知橢圓的離心率為
,點(diǎn)A的坐標(biāo)為
,且
.
(I)求橢圓的方程;
(II)設(shè)直線l:
與橢圓在第一象限的交點(diǎn)為P,且l與直線AB交于點(diǎn)Q. 若
(O為原點(diǎn)) ,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知橢圓
上任意一點(diǎn)到其兩個(gè)焦點(diǎn)
,
的距離之和等于
,焦距為2c,圓
,
,
是橢圓的左、右頂點(diǎn),AB是圓O的任意一條直徑,四邊形
面積的最大值為
.
![]()
(1)求橢圓C的方程;
(2)如圖,若直線
與圓O相切,且與橢圓相交于M,N兩點(diǎn),直線
與
平行且與橢圓相切于P(O,P兩點(diǎn)位于
的同側(cè)),求直線
,
距離d的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com