分析 (1)求出函數(shù)的導(dǎo)數(shù),通過導(dǎo)數(shù)為0,求出a 值即可;
(2)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的方程,求出函數(shù)的單調(diào)區(qū)間,求出函數(shù)的極值點(diǎn)即可;
(3)通過導(dǎo)數(shù)符號不變號,轉(zhuǎn)化為二次函數(shù)的判別式恒成立問題,求解即可.
解答 解:(1)f′(x)=$\frac{e(1-{ax}^{2})}{{(1+{ax}^{2})}^{2}}$,
若x=$\frac{1}{3}$是f(x)的極值點(diǎn),
則f′($\frac{1}{3}$)=0,即1-$\frac{1}{9}$a=0,解得:a=9,
經(jīng)檢驗(yàn)a=9符合題意;
(2)a=$\frac{4}{3}$時(shí),f′(x)=$\frac{e(1{-\frac{4}{3}x}^{2})}{{(1+{\frac{4}{3}x}^{2})}^{2}}$,
令f′(x)=0,即1-$\frac{4}{3}$x2=0,解得:x=±$\frac{\sqrt{3}}{2}$,
令f′(x)>0,-$\frac{\sqrt{3}}{2}$<x<$\frac{\sqrt{3}}{2}$,令f′(x)<0,解得:x>$\frac{\sqrt{3}}{2}$或x<-$\frac{\sqrt{3}}{2}$,
故f(x)在(-$\frac{\sqrt{3}}{2}$)遞減,在(-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$)遞增,在($\frac{\sqrt{3}}{2}$,+∞)遞減,
故-$\frac{\sqrt{3}}{2}$是極小值點(diǎn),$\frac{\sqrt{3}}{2}$是極大值點(diǎn);
(2)若f(x)為R上的單調(diào)函數(shù),則f′(x)在R上不變號.
結(jié)合(1)與條件a>0,知ax2-2ax+1≥0在R上恒成立,
由△=4a2-4a=4a(a-1)≤0,得0<a≤1.即實(shí)數(shù)a的取值范圍是(0,1].
點(diǎn)評 本題考查函數(shù)的導(dǎo)數(shù)的應(yīng)用,函數(shù)的最值,以及函數(shù)的單調(diào)性,函數(shù)恒成立的應(yīng)用,考查計(jì)算能力.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | f(cosα)>f(cosβ) | B. | f(sinα)>f(sinβ) | C. | f(sinα)<f(cosβ) | D. | f(sinα)>f(cosβ) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | -20$\sqrt{2}$ | B. | 20 | C. | -20 | D. | 20$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1 | B. | -1 | C. | $\frac{1}{2}$ | D. | $-\frac{1}{2}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com