【題目】如圖,將寬和長都分別為x,
的兩個矩形部分重疊放在一起后形成的正十字形面積為
注:正十字形指的是原來的兩個矩形的頂點都在同一個圓上,且兩矩形長所在的直線互相垂直的圖形
,
![]()
求y關于x的函數(shù)解析式;
當x,y取何值時,該正十字形的外接圓面積最小,并求出其最小值.
科目:高中數(shù)學 來源: 題型:
【題目】某科研團隊對某一生物生長規(guī)律進行研究,發(fā)現(xiàn)其生長蔓延的速度越來越快.開始在某水域投放一定面積的該生物,經過2個月其覆蓋面積為18平方米,經過3個月其覆蓋面積達到27平方米.該生物覆蓋面積
(單位:平方米)與經過時間
個月的關系有兩個函數(shù)模型
與
可供選擇.
(1)試判斷哪個函數(shù)模型更合適,并求出該模型的函數(shù)解析式;
(2)問約經過幾個月,該水域中此生物的面積是當初投放的1000倍
(參考數(shù)據(jù):
)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓
與直線
相切于點
,圓心
在
軸上.
(1)求圓
的方程;
(2)過點
且不與
軸重合的直線
與圓
相交于
兩點,
為坐標原點,直線
分別與直線
相交于
兩點,記
,
的面積分別是
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年2月13日《煙臺市全民閱讀促進條例》全文發(fā)布,旨在保障全民閱讀權利,培養(yǎng)全民閱讀習慣,提高全民閱讀能力,推動文明城市和文化強市建設.某高校為了解條例發(fā)布以來全校學生的閱讀情況,隨機調查了200名學生每周閱讀時間
(單位:小時)并繪制如圖所示的頻率分布直方圖.
![]()
(1)求這200名學生每周閱讀時間的樣本平均數(shù)
和樣本方差
(同一組中的數(shù)據(jù)用該組區(qū)間的中間值代表);
(2)由直方圖可以認為,目前該校學生每周的閱讀時間
服從正態(tài)分布
,其中
近似為樣本平均數(shù)
,
近似為樣本方差
.
(i)一般正態(tài)分布的概率都可以轉化為標準正態(tài)分布的概率進行計算:若
,令
,則
,且
.利用直方圖得到的正態(tài)分布,求
.
(ii)從該高校的學生中隨機抽取20名,記
表示這20名學生中每周閱讀時間超過10小時的人數(shù),求
(結果精確到0.0001)以及
的數(shù)學期望.
參考數(shù)據(jù):
,
.若
,則
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,設橢圓
(a>1).
![]()
(Ⅰ)求直線y=kx+1被橢圓截得的線段長(用a、k表示);
(Ⅱ)若任意以點A(0,1)為圓心的圓與橢圓至多有3個公共點,求橢圓離心率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】美國對中國芯片的技術封鎖,這卻激發(fā)了中國“芯”的研究熱潮,中國華為公司研發(fā)的
、
兩種芯片都已獲得成功.該公司研發(fā)芯片已經耗費資金
千萬元,現(xiàn)在準備投入資金進行生產,經市場調查與預測,生產
芯片的毛收入與投入的資金成正比,已知每投入
千萬元,公司獲得毛收入
千萬元;生產
芯片的毛收入
(千萬元)與投入的資金
(千萬元)的函數(shù)關系為
(
與
都為常數(shù)),其圖象如圖所示.
![]()
(1)試分別求出生產
、
兩種芯片的毛收入
(千萬元)與投入資金
(千萬元)函數(shù)關系式;
(2)現(xiàn)在公司準備投入
億元資金同時生產
、
兩種芯片,設投入
千萬元生產
芯片,用
表示公司所獲利潤,當
為多少時,可以獲得最大利潤?并求最大利潤.(利潤
芯片毛收入
芯片毛收入
研發(fā)耗費資金)
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com