欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

1.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ為參數(shù)).
(Ⅰ)求曲線C的普通方程;
(Ⅱ)若傾斜角為45°的直線l經(jīng)過點(diǎn)P(1,2)且與直線C相交于點(diǎn)A、B,求線段AB的長度.

分析 (I)用x,y表示出cosθ,sinθ,根據(jù)正余弦的平方和等于1消參數(shù)得到普通方程;
(II)寫出直線l的參數(shù)方程,代入曲線的普通方程得到關(guān)于參數(shù)t的一元二次方程,根據(jù)參數(shù)的幾何意義解出AB.

解答 解:(1)∵$\left\{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ為參數(shù)),∴cosθ=$\frac{x}{2}$,sinθ=$\frac{y}{\sqrt{3}}$,∴$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.
∴曲線C的普通方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.
(II)直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)).
將l的參數(shù)方程代入$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$得7t2+22$\sqrt{2}$t+14=0,
設(shè)A,B兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為t1,t2,則t1+t2=-$\frac{22\sqrt{2}}{7}$,t1t2=2.
∴t1,t2符號(hào)相同.
∴|AB|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$=$\sqrt{(\frac{22\sqrt{2}}{7})^{2}-8}$=$\frac{24}{7}$.

點(diǎn)評(píng) 本題考查了參數(shù)方程與普通方程的轉(zhuǎn)化,參數(shù)方程在求距離中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知奇函數(shù)f(x)=ax3+bx2+2x+c,且f(1)=5,則f(2)=( 。
A.-5B.10C.25D.28

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知sinα=-$\frac{8}{17}$,且角α是第三象限的角,求cosα,tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)f(x)=-x2+3x-a,g(x)=2x-x2,若f[g(x)]≥0對(duì)x∈[0,1]恒成立,則實(shí)數(shù)a的范圍是(  )
A.(-∞,2]B.(-∞,e]C.(-∞,ln2]D.[0,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知兩個(gè)不共線的向量$\overrightarrow{OA}$和$\overrightarrow{OC}$,向量$\overrightarrow{OB}$與$\overrightarrow{OA}$關(guān)于向量$\overrightarrow{OC}$對(duì)稱,設(shè)$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,$\overrightarrow{OC}$=$\overrightarrow{c}$,則$\overrightarrow$用$\overrightarrow{a}$和$\overrightarrow{c}$表示為(  )
A.2($\overrightarrow{a}$•$\overrightarrow{c}$)$\overrightarrow{c}$-$\overrightarrow{a}$B.$\frac{2(\overrightarrow{a}•\overrightarrow{c})}{|\overrightarrow{c}|}•\overrightarrow{c}-\overrightarrow{a}$C.$\frac{2(\overrightarrow{a}•\overrightarrow{c})}{|\overrightarrow{c}|}-\overrightarrow{a}$D.$\frac{2(\overrightarrow{a}•\overrightarrow{c})}{|\overrightarrow{c}{|}^{2}}•\overrightarrow{c}-\overrightarrow{a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知圓錐曲線C:$\left\{\begin{array}{l}{x=2cosα}\\{y=\sqrt{3}sinα}\end{array}\right.$(α是參數(shù))和定點(diǎn)A(0,$\sqrt{3}$),F(xiàn)1,F(xiàn)2分別是曲線C的左、右焦點(diǎn).
(1)以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立坐標(biāo)系,求直線AF2的極坐標(biāo)系方程.
(2)若P是曲線C上的動(dòng)點(diǎn),求|$\overrightarrow{P{F}_{1}}$|•|$\overrightarrow{P{F}_{2}}$|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 $\left\{\begin{array}{l}x=1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$.(t為參數(shù)),在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρ=acosθ,(a>0)
(Ⅰ) 求直線l和曲線C的普通方程;
(Ⅱ) 若直線l與曲線C相切,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知命題p:m∈R且m+1≤0,命題q:?x∈R,x2+mx+1>0恒成立,若p∧q為假命題且p∨q為真命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列命題中的說法正確的是( 。
A.命題“若x2=1,則x=1”的否命題為“若x2=1,則x≠1”
B.“x=-1”是“x2+5x-6=0”的必要不充分條件
C.命題“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1>0”
D.命題“在△ABC中,若A>B,則sinA>sinB”的逆否命題為真命題

查看答案和解析>>

同步練習(xí)冊(cè)答案