【題目】已知橢圓C的兩個(gè)焦點(diǎn)是F1(﹣2,0),F(xiàn)2(2,0),且橢圓C經(jīng)過點(diǎn)A(0,
).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若過橢圓C的左焦點(diǎn)F1(﹣2,0)且斜率為1的直線l與橢圓C交于P、Q兩點(diǎn),求線段PQ的長(zhǎng).
【答案】(1)
(2) ![]()
【解析】試題分析:
由題意可得橢圓的焦點(diǎn)在
軸上,設(shè)橢圓方程為
,由題意可得
求得
,即可得到所求橢圓方程。
求出直線
的方程,代入橢圓方程,設(shè)
,
,運(yùn)用韋達(dá)定理,由弦長(zhǎng)公式計(jì)算即可得到所求值。
解析:(1)由題意可知橢圓焦點(diǎn)在x軸上,設(shè)橢圓方程為
(a>b>0),
由題意可知
,∴a=3,b=
.
∴橢圓的標(biāo)準(zhǔn)方程為
=1.
(2)直線l的方程為y=x+2,
聯(lián)立方程組
,得14x2+36x﹣9=0,
設(shè)P(x1,y1),Q(x2,y2),則x1+x2=﹣
,x1x2=﹣
,
∴|PQ|=
|x1﹣x2|=![]()
=![]()
=
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量(
噸)與相應(yīng)的生產(chǎn)能耗
(噸)標(biāo)準(zhǔn)煤的幾組對(duì)照數(shù)據(jù):
|
|
|
|
|
|
|
|
|
|
(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;并指出
是否線性相關(guān);
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出
關(guān)于
的線性回歸方程
;
(3)已知該廠技術(shù)改造前
噸甲產(chǎn)品能耗為
噸標(biāo)準(zhǔn)煤,試根據(jù)求出的線性回歸方程,預(yù)測(cè)生產(chǎn)
噸甲產(chǎn)品的生產(chǎn)能耗比技術(shù)改造前降低多少噸標(biāo)準(zhǔn)煤?
(參考:用最小二乘法求線性回歸方程系數(shù)公式 ,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中
,點(diǎn)P,G分別是AD,EF的中點(diǎn),已知
平面ABC,AD=EF=3,DE=DF=2.
![]()
(Ⅰ)求證:DG⊥平面BCEF;
(Ⅱ)求PE與平面BCEF 所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體
的棱長(zhǎng)為
,動(dòng)點(diǎn)
、
在棱
上,動(dòng)點(diǎn)
,
分別在棱
,
上,若
,
,
,
(
,
,
大于零),則四面體
的體積( ).
![]()
A. 與
,
,
都有關(guān) B. 與
有關(guān),與
,
無關(guān)
C. 與
有關(guān),與
,
無關(guān) D. 與
有關(guān),與
,
無關(guān)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠有4臺(tái)大型機(jī)器,在一個(gè)月中,一臺(tái)機(jī)器至多出現(xiàn)1次故障,且每臺(tái)機(jī)器是否出現(xiàn)故障是相互獨(dú)立的,出現(xiàn)故障時(shí)需1名工人進(jìn)行維修,每臺(tái)機(jī)器出現(xiàn)故障需要維修的概率為
.
(1)若出現(xiàn)故障的機(jī)器臺(tái)數(shù)為
,求
的分布列;
(2) 該廠至少有多少名工人才能保證每臺(tái)機(jī)器在任何時(shí)刻同時(shí)出現(xiàn)故障時(shí)能及時(shí)進(jìn)行維修的概率不少于90%?
(3)已知一名工人每月只有維修1臺(tái)機(jī)器的能力,每月需支付給每位工人1萬元的工資,每臺(tái)機(jī)器不出現(xiàn)故障或出現(xiàn)故障能及時(shí)維修,就使該廠產(chǎn)生5萬元的利潤,否則將不產(chǎn)生利潤,若該廠現(xiàn)有2名工人,求該廠每月獲利的均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某科技公司生產(chǎn)一種手機(jī)加密芯片,其質(zhì)量按測(cè)試指標(biāo)劃分為:指標(biāo)大于或等于
為合格品,小于
為次品.現(xiàn)隨機(jī)抽取這種芯片共
件進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如表:
測(cè)試指標(biāo) |
|
|
|
|
|
芯片數(shù)量(件) |
|
|
|
|
|
已知生產(chǎn)一件芯片,若是合格品可盈利
元,若是次品則虧損
元.
(Ⅰ)試估計(jì)生產(chǎn)一件芯片為合格品的概率;并求生產(chǎn)
件芯片所獲得的利潤不少于
元的概率.
(Ⅱ)記
為生產(chǎn)
件芯片所得的總利潤,求隨機(jī)變量
的分布列和數(shù)學(xué)期望
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市共有初中學(xué)生270000人,其中初一年級(jí),初二年級(jí),初三年級(jí)學(xué)生人數(shù)分別為99000,90000,81000,為了解該市學(xué)生參加“開放性科學(xué)實(shí)驗(yàn)活動(dòng)”的意向,現(xiàn)采用分層抽樣的方法從中抽取一個(gè)容量為3000的樣本,那么應(yīng)該抽取初三年級(jí)的人數(shù)為( )
A.800
B.900
C.1000
D.1100
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐
中,底面是以
為中心的菱形,
底面
,
,
為
上一點(diǎn),且
.
(1)證明:
平面
;
(2)若
,求四棱錐
的體積.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com