【題目】已知函數(shù)
為常數(shù)).
(1)討論
的單調(diào)性;
(2)
是
的導(dǎo)函數(shù),若
存在兩個極值點(diǎn)
,求證:![]()
【答案】(1)當(dāng)
時,函數(shù)在實(shí)數(shù)集上的減函數(shù);
當(dāng)
時,當(dāng)
時,函數(shù)
單調(diào)遞減;
當(dāng)
時,函數(shù)
單調(diào)遞增;
當(dāng)
時,
,函數(shù)
單調(diào)遞減;(2)證明見解析過程.
【解析】
(1)對函數(shù)進(jìn)行求導(dǎo),結(jié)合基本不等式進(jìn)行分類討論即可;
(2)計(jì)算出
的值,根據(jù)已知和所要證明的不等式,構(gòu)造新函數(shù),再對新函數(shù)進(jìn)行求導(dǎo),結(jié)合基本不等式可以判斷出新函數(shù)的單調(diào)性,利用新函數(shù)的單調(diào)性證明即可.
(1)
.
因?yàn)?/span>
(當(dāng)且僅當(dāng)
時取等號),所以
,
當(dāng)
時,
,函數(shù)在實(shí)數(shù)集上的減函數(shù);
當(dāng)
時,
或
,
當(dāng)
時,
,函數(shù)
單調(diào)遞減;
當(dāng)
時,
,函數(shù)
單調(diào)遞增;
當(dāng)
時,
,函數(shù)
單調(diào)遞減;
(2)
,函數(shù)
存在兩個極值點(diǎn)
,由(1)可知:
,此時構(gòu)造新函數(shù)為
,
所以
,所以函數(shù)
是減函數(shù),
當(dāng)
時,
,
所以有
,因?yàn)?/span>
,所以有
![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,當(dāng)且僅當(dāng)
,
時取到極值,且極大值比極小值大![]()
(1)求
,
值;
(2)求出
的極大值和極小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)討論函數(shù)
的單調(diào)性;
(2)若存在正數(shù)a,使得
時,
,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)
(
,
為常數(shù),且
)滿足條件:
,且方程
有兩相等實(shí)根.
(1)求
的解析式;
(2)設(shè)命題
“函數(shù)
在
上有零點(diǎn)”,命題
“函數(shù)
在
上單調(diào)遞增”;若命題“
”為真命題,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),經(jīng)過變換
后曲線
變換為曲線
.
(1)在以
為極點(diǎn),
軸的非負(fù)半軸為極軸(單位長度與直角坐標(biāo)系相同)的極坐標(biāo)系中,求
的極坐標(biāo)方程;
(2)求證:直線
與曲線
的交點(diǎn)也在曲線
上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓O1與圓O:x2+y2=r(r>0)交于點(diǎn)P(﹣1,y0).且關(guān)于直線x+y=1對稱.
(1)求圓O及圓O1的方程:
(2)在第一象限內(nèi).圓O上是否存在點(diǎn)A,過點(diǎn)A作直線l與拋物線y2=4x交于點(diǎn)B,與x軸交于點(diǎn)D,且以點(diǎn)D為圓心的圓過點(diǎn)O,A,B?若存在.求出點(diǎn)A的坐標(biāo);若不存在.說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列
的前n項(xiàng)和為Sn,若
為等差數(shù)列,且
.
(1)求數(shù)列
的通項(xiàng)公式;
(2)是否存在正整數(shù)
, 使
成等比數(shù)列?若存在,請求出這個等比數(shù)列;若不存在,請說明理由;
(3)若數(shù)列
滿足
,
,且對任意的
,都有
,求正整數(shù)k的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線C:y2=2px(p>0)的焦點(diǎn)是F,直線y=2與拋物線C的交點(diǎn)到F的距離等于2.
(1)求拋物線C的方程;
(2)過點(diǎn)(2,0)斜率為k的直線l交拋物線C于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),直線AO與直線x=﹣2相交于點(diǎn)P,求證:BP∥x軸.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
的直角頂點(diǎn)
在
軸上,點(diǎn)
為斜邊
的中點(diǎn),且
平行于
軸.
(Ⅰ)求點(diǎn)
的軌跡方程;
(Ⅱ)設(shè)點(diǎn)
的軌跡為曲線
,直線
與
的另一個交點(diǎn)為
.以
為直徑的圓交
軸于
即此圓的圓心為
,
求
的最大值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com