已知橢圓
=1(a>b>0)的離心率為
,且過點(diǎn)P
,A為上頂點(diǎn),F(xiàn)為右焦點(diǎn).點(diǎn)Q(0,t)是線段OA(除端點(diǎn)外)上的一個(gè)動(dòng)點(diǎn),過Q作平行于x軸的直線交直線AP于點(diǎn)M,以QM為直徑的圓的圓心為N.
(1) 求橢圓方程;
(2) 若圓N與x軸相切,求圓N的方程;
(3) 設(shè)點(diǎn)R為圓N上的動(dòng)點(diǎn),點(diǎn)R到直線PF的最大距離為d,求d的取值范圍.
![]()
解:(1) ∵ e=
,不妨設(shè)c=3k,a=5k,則b=4k,其中k>0,故橢圓方程為
=1(a>b>0),∵ P
在橢圓上,∴
=1,解得k=1,
∴ 橢圓方程為
=1.
(2) kAP=
=-
,則直線AP的方程為y=-
x+4,令y=t(0<t<4),則x=
,∴ M
,
∵ Q(0,t),∴ N
,
∵ 圓N與x軸相切,∴
=t,由題意M為第一象限的點(diǎn),則
=t,解得t=
,
∴ N
,
圓N的方程為![]()
(3) F(3,0),kPF=
,
∴ 直線PF的方程為y=
(x-3),即12x-5y-36=0,
∴ 點(diǎn)N到直線PF的距離為
![]()
∴ 當(dāng)0<t≤
時(shí),d=
(6-5t)+
(4-t)=
,此時(shí)
≤d<
;
當(dāng)
<t<4時(shí),d=
(5t-6)+
(4-t)=
,此時(shí)
<d<
.
∴ 綜上,d的取值范圍為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知拋物線y2=2px(p≠0)及定點(diǎn)A(a,b),B(-a,0),ab≠0,b2≠2pa,M是拋物線上的點(diǎn).設(shè)直線AM、BM與拋物線的另一個(gè)交點(diǎn)分別為M1、M2,當(dāng)M變動(dòng)時(shí),直線M1M2恒過一個(gè)定點(diǎn),此定點(diǎn)坐標(biāo)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在△ABC中,∠ACB=60°,sinA∶sinB=8∶5,則以A、B為焦點(diǎn)且過點(diǎn)C的橢圓的離心率為________.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知F1、F2為雙曲線C:x2-y2=1的左、右焦點(diǎn),點(diǎn)P在C上,∠F1PF2=60°,則|PF1|·|PF2|=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知曲線C:(5-m)x2+(m-2)y2=8(m∈R).
(1) 若曲線C是焦點(diǎn)在x軸上的橢圓,求m的取值范圍;
(2) 設(shè)m=4,曲線C與y軸的交點(diǎn)為A,B(點(diǎn)A位于點(diǎn)B的上方),直線y=kx+4與曲線C交于不同的兩點(diǎn)M,N,直線y=1與直線BM交于點(diǎn)G.求證:A,G,N三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知雙曲線的焦點(diǎn)在x軸上,兩個(gè)頂點(diǎn)間的距離為2,焦點(diǎn)到漸近線的距離為
.
(1) 求雙曲線的標(biāo)準(zhǔn)方程;
(2) 寫出雙曲線的實(shí)軸長、虛軸長、焦點(diǎn)坐標(biāo)、離心率、漸近線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
觀察下列等式:
…,根據(jù)這些等式反映的結(jié)果,可以得出一個(gè)關(guān)于自然數(shù)n的等式,這個(gè)等式可以表示為______________________.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com