分析 利用二階行列式展開式法則和余弦函數二倍角公式求解.
解答 解:函數$f(x)=|{\begin{array}{l}{cos(π-x)}&{sinx}\\{sin(π+x)}&{cosx}\end{array}}|$
=cos(π-x)cosx-sin(π+x)sinx
=-cos2x+sin2x
=-cos2x,
∴函數$f(x)=|{\begin{array}{l}{cos(π-x)}&{sinx}\\{sin(π+x)}&{cosx}\end{array}}|$的最小正周期t=$\frac{2π}{2}$=π.
故答案為:π.
點評 本題考查三角函數的最小正周期的求法,是基礎題,解題時要認真審題,注意二階行列式展開法則的合理運用.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | “p∧q”為真命題 | B. | “p∨q”為真命題 | C. | “¬p”為真命題 | D. | 以上都不對 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com