【題目】我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費方案,擬確定一個合理的月用水量標準
(噸)、一位居民的月用水量不超過
的部分按平價收費,超過
的部分按議價收費,為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照
分成9組,制成了如圖所示的頻率分布直方圖.
![]()
(1)求直方圖中
的值;
(2)設該市有30萬居民,估計全市居民中月均用量不低于3噸的人數(shù),并說明理由;
(3)若該市政府希望使85%的居民每月的用水量不超過標準
(噸),估計
的值,并說明理由.
科目:高中數(shù)學 來源: 題型:
【題目】某城市
戶居民的月平均用電量(單位:度),以
,
,
,
,
,
,
分組的頻率分布直方圖如圖.
![]()
(I)求直方圖中
的值;
(II)求月平均用電量的眾數(shù)和中位數(shù);
(III)在月平均用電量為
,
,
,
的四組用戶中,用分層抽樣的方法抽取
戶居民,則月平均用電量在
的用戶中應抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知過點
的直線
的參數(shù)方程是
(
為參數(shù)).以平面直角坐標系的原點為極點,
軸的正半軸為極軸,建立極坐標系,曲線
的極坐標方程式為
.
(Ⅰ)求直線
的普通方程和曲線
的直角坐標方程;
(Ⅱ)若直線
與曲線
交于兩點
,且
,求實數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知中心在坐標原點
的橢圓
經(jīng)過點
,且點
為其右焦點.
(Ⅰ)求橢圓
的標準方程;
(Ⅱ)是否存在平行于
的直線
,使得直線
與橢圓
有公共點,且直線
與
的距離等于4?若存在,求出直線
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列
的前
項和為
且滿足
,數(shù)列
中,
對任意正整數(shù)![]()
(1)求數(shù)列
的通項公式;
(2)是否存在實數(shù)
,使得數(shù)列
是等比數(shù)列?若存在,請求出實數(shù)
及公比
的值,若不存在,請說明理由;
(3)求證:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系
中,曲線
的參數(shù)方程為
(
為參數(shù));在以原點
為極點,
軸的正半軸為極軸的極坐標系中,曲線
的極坐標方程為
.
(I)求曲線
的極坐標方程和曲線
的直角坐標方程;
(II)若射線
與曲線
,
的交點分別為
(
異于原點),當斜率
時,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓
與直線
相切.
(1)求圓
的方程;
(2)過點
的直線
截圓
所得弦長為
,求直線
的方程;
(3)設圓
與
軸的負半抽的交點為
,過點
作兩條斜率分別為
的直線交圓
于
兩點,且
,證明:直線
過定點,并求出該定點坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】通常表明地震能量大小的尺度是里氏震級,其計算公式為:
,其中,
是被測地震的最大振幅,
是“標準地震”的振幅(使用標準地震振幅是為了修正測震儀距實際震中的距離造成的偏差)。
(1)假設在一次地震中,一個距離震中100千米的測震儀記錄的地震最大振幅是30,此時標準地震的振幅是0.001,計算這次地震的震級(精確到0.1);
(2)5級地震給人的震感已比較明顯,計算8級地震的最大振幅是5級地震的最大振幅的多少倍?
(以下數(shù)據(jù)供參考:
,
)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知三棱錐P-ABC中,∠ACB=90°,CB=4,AB=20,D為AB中點,M為PB中點,且△PDB是正三角形,PA⊥PC。
.
(1)求證:DM∥平面PAC;
(2)求證:平面PAC⊥平面ABC;
(3)求三棱錐M-BCD的體積
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com