【題目】如圖,四棱錐
,底面
側(cè)面
,
分別為
的中點,且
,
,
,
.
![]()
(I)證明:
平面
;
(II)設(shè)
,求三棱錐
的體積.
【答案】(I)證明見解析;(II)
.
【解析】
試題分析:(I)借助題設(shè)條件運用線面垂直的判定定理推證;(II)借助題設(shè)運用三棱錐的體積公式探求.
試題解析:
(I)證明:由題意知
為等腰直角三角形,而
為
的中點,所以
,..........2分
又因為平面
平面
,且
,所以
平面
,................3分
而
平面
,所以
,所以
平面
,
連結(jié)
,則
,
,而
,
,.......................5分
所以
,
,
是平行四邊形,所以
,
平面
...........6分
(II)因為
平面
,即
平面
,
是三棱錐
的高,........8分
所以
,..........................................10分
于是三棱錐
的體積為
........12分
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校大一新生中的6名同學(xué)打算參加學(xué)校組織的“雅荷文學(xué)社”、“青春風(fēng)街舞社”、“羽乒協(xié)會”、“演講團”、“吉他協(xié)會”五個社團,若每名同學(xué)必須參加且只能參加1個社團且每個社團至多兩人參加,則這6個人中至多有1人參加“演講團”的不同參加方法數(shù)為( )
A. 4680 B. 4770 C. 5040 D. 5200
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)若
滿足:對任意的
,都有
恒成立,試確定實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三(1)班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,可見部分如下:
![]()
試根據(jù)圖表中的信息解答下列問題:
(1)求全班的學(xué)生人數(shù)及分?jǐn)?shù)在[70,80)之間的頻數(shù);
(2)為快速了解學(xué)生的答題情況,老師按分層抽樣的方法從位于[70,80),[80,90)和[90,100]分?jǐn)?shù)段的試卷中抽取8份進行分析,再從中任選3人進行交流,求交流的學(xué)生中,成績位于[70,80)分?jǐn)?shù)段的人數(shù)X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)求函數(shù)
的單調(diào)遞減區(qū)間;
(2)求函數(shù)
在區(qū)間
上的最大值及最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
(
)的離心率為
,連接橢圓的四個頂點得到的四邊形的面積為
.
(1)求橢圓
的方程;
(2)設(shè)橢圓
的左焦點為
,右焦點為
,直線
過點
且垂直于橢圓的長軸,動直線
垂直
于點
,線段
的垂直平分線交
于點
,求點
的軌跡
的方程;
(3)設(shè)
為坐標(biāo)原點,取
上不同于
的點
,以
為直徑作圓與
相交另外一點
,求該圓面積的最小值時點
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
:
的焦點為
,過點
的直線
與
相交于
、
兩點,點
關(guān)于
軸的對稱點為
.
(Ⅰ)判斷點
是否在直線
上,并給出證明;
(Ⅱ)設(shè)
,求
的內(nèi)切圓
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)統(tǒng)計,某醫(yī)院一個結(jié)算窗口每天排隊結(jié)算的人數(shù)及相應(yīng)的概率如下:
排除人數(shù) | 0--5 | 6--10 | 11--15 | 16--20 | 21--25 | 25人以上 |
概率 | 0.1 | 0.15 | 0.25 | 0.25 | 0.2 | 0.05 |
(1)求每天超過20人排隊結(jié)算的概率;
(2)求2天中,恰有1天出現(xiàn)超過20人排隊結(jié)算的概率.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com