(1)不等式
對(duì)一切
R恒成立,求實(shí)數(shù)
的取值范圍;
(2)已知
是定義在
上的奇函數(shù),當(dāng)
時(shí),
,求
的解析式.
(1)
;(2)
.
解析試題分析:(1)對(duì)二次項(xiàng)系數(shù)為參數(shù)
的一元二次不等式,解之前應(yīng)先分
和
兩種情況進(jìn)行討論,從而解得實(shí)數(shù)
的取值范圍;(2)此類問(wèn)題需求
時(shí)的解析式,則設(shè)
,此時(shí)
,根據(jù)
時(shí)的解析式得
表達(dá)式,再由函數(shù)
是定義在
上的奇函數(shù),可得
,既得
的解析式.
試題解析:(1)當(dāng)
時(shí),原不等式為
,顯然不對(duì)一切
R恒成立,則
;1分
當(dāng)
時(shí),由不等式
,即
對(duì)一切
R恒成立,
則
, 4分
化簡(jiǎn)得
,即
, 5分
所以實(shí)數(shù)
的取值范圍為
. 6分
(2)由題意當(dāng)
時(shí),
,所以
, 9分
又因
,則
, 12分
所以
的解析式為
. 14分
考點(diǎn):1、含參數(shù)的一元二次不等式的解法;2、奇函數(shù)的解析式得求法.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)![]()
(1)計(jì)算
的值,據(jù)此提出一個(gè)猜想,并予以證明;
(2)證明:除點(diǎn)(2,2)外,函數(shù)
的圖像均在直線
的下方.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
.
(1)在區(qū)間
上畫出函數(shù)
的圖象 ;
(2)設(shè)集合
. 試判斷集合
和
之間
的關(guān)系,并給出證明 ;
(3)當(dāng)
時(shí),求證:在區(qū)間
上,
的圖象位于函數(shù)
圖象的上方.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
滿足
,
且
在
上恒成立.
(1)求
的值;
(2)若
,解不等式
;
(3)是否存在實(shí)數(shù)
,使函數(shù)
在區(qū)間
上有最小值
?若存在,請(qǐng)求出實(shí)數(shù)
的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
.
(Ⅰ)當(dāng)
時(shí),求曲線
在原點(diǎn)處的切線方程;
(Ⅱ)當(dāng)
時(shí),討論函數(shù)
在區(qū)間
上的單調(diào)性;
(Ⅲ)證明不等式
對(duì)任意
成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
.
(Ⅰ)請(qǐng)寫出函數(shù)
在每段區(qū)間上的解析式,并在圖中的直角坐標(biāo)系中作出函數(shù)
的圖象;
(II)若不等式
對(duì)任意的實(shí)數(shù)
恒成立,求實(shí)數(shù)
的取值范圍.![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com