(本小題滿分12分)已知直線
的方程為
, 求直線
的方程, 使得:
(1)
與
平行, 且過點(diǎn)(-1,3) ;
(2)
與
垂直, 且
與兩軸圍成的三角形面積為4.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知直線
經(jīng)過點(diǎn)
,傾斜角
,
(1)寫出直線
的參數(shù)方程
(2)設(shè)
與圓
相交與兩點(diǎn)
,求點(diǎn)
到
兩點(diǎn)的距離之積
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題14分)如圖,在平面直角坐標(biāo)系xoy中,設(shè)點(diǎn)F(0, p)(p>0), 直線l : y= -p, 點(diǎn)P在直線l上移動(dòng),R是線段PF與x軸的交點(diǎn), 過R、P分別作直線
、
,使
,
.
(1) 求動(dòng)點(diǎn)
的軌跡
的方程;
(2)在直線
上任取一點(diǎn)
做曲線
的兩條切線,設(shè)切點(diǎn)為
、
,求證:直線
恒過一定點(diǎn).![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)三角形的三個(gè)頂點(diǎn)是A(4,0)、B(6,7)、C(0,3).
(1)求BC邊上的高所在直線的方程;
(2)求BC邊上的中線所在直線的方程;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分).
求傾斜角是直線y=-
x+1的傾斜角的
,且分別滿足下列條件的直線方程:
(1)經(jīng)過點(diǎn)(
,-1);
(2)在y軸上的截距是-5.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
直線
過點(diǎn)
且斜率為
>
,將直線
繞
點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)45°得直線
,若直線
和
分別與
軸交于
,
兩點(diǎn).(1)用
表示直線
的斜率;(2)當(dāng)
為何值時(shí),
的面積最?并求出面積最小時(shí)直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(10分)△ABC中,已知三個(gè)頂點(diǎn)的坐標(biāo)分別是A(
,0),B(6,0),C(6,5),
(1)求AC邊上的高線BH所在的直線方程;
(2)求
的角平分線所在直線的方程。![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分6分)
已知直線
與
的交點(diǎn)為
.
(Ⅰ)求交點(diǎn)
的坐標(biāo);
(Ⅱ)求過點(diǎn)
且平行于
直線
的直線方程;
(Ⅲ)求過點(diǎn)
且垂直于直線
的直線方程.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com