【題目】已知函數(shù)
.
(Ⅰ)討論函數(shù)
的單調(diào)性;
(Ⅱ)若函數(shù)
有極小值,求該極小值的取值范圍.
【答案】(Ⅰ):當(dāng)
時(shí),函數(shù)
的單調(diào)遞增區(qū)間為
;當(dāng)
時(shí),函數(shù)
的單調(diào)遞增區(qū)間為
,單調(diào)遞減區(qū)間為
;
(Ⅱ)![]()
【解析】試題分析:(1)對(duì)函數(shù)求導(dǎo)得到導(dǎo)函數(shù),根據(jù)導(dǎo)函數(shù)的正負(fù)求得函數(shù)的單調(diào)性;(2)結(jié)合第一問得到當(dāng)
時(shí),函數(shù)
的單調(diào)遞增區(qū)間為
,單調(diào)遞減區(qū)間為
,所以
,對(duì)此表達(dá)式進(jìn)行求導(dǎo),研究單調(diào)性,求最值即可.
詳解:
(Ⅰ)函數(shù)
的定義域?yàn)?/span>
,
,
①當(dāng)
時(shí),
,函數(shù)
在
內(nèi)單調(diào)遞增,
②當(dāng)
時(shí),令
得
,
當(dāng)
時(shí),
,
單調(diào)遞減;
當(dāng)
時(shí),
,
單調(diào)遞增;
綜上所述:當(dāng)
時(shí),函數(shù)
的單調(diào)遞增區(qū)間為
;
當(dāng)
時(shí),函數(shù)
的單調(diào)遞增區(qū)間為
,單調(diào)遞減區(qū)間為
.
(Ⅱ)①當(dāng)
時(shí),
,函數(shù)
在
內(nèi)單調(diào)遞增,沒有極值;
②當(dāng)
時(shí),函數(shù)
的單調(diào)遞增區(qū)間為
,單調(diào)遞減區(qū)間為
,
所以
,
記
,則
,由
得
,
所以
,
所以函數(shù)
的極小值的取值范圍是![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
(a>b>0)經(jīng)過點(diǎn)
,且離心率為
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知A(0,b),B(a,0),點(diǎn)P是橢圓C上位于第三象限的動(dòng)點(diǎn),直線AP、BP分別將x軸、y軸于點(diǎn)M、N,求證:|AN||BM|為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】M是正方體
的棱
的中點(diǎn),給出下列四個(gè)命題:①過M點(diǎn)有且只有一條直線與直線
都相交;②過M點(diǎn)有且只有一條直線與直線
都垂直;③過M點(diǎn)有且只有一個(gè)平面與直線
都相交;④過M點(diǎn)有且只有一個(gè)平面與直線
都平行;其中真命題是( )
A.②③④B.①③④C.①②④D.①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)![]()
為偶函數(shù),且函數(shù)
的圖象的兩相鄰對(duì)稱中心的距離為
.
(1)求
的值;
(2)將函數(shù)
的圖象向右平移
個(gè)單位長(zhǎng)度后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來的4倍,縱坐標(biāo)不變,得到函數(shù)
的圖象,求函數(shù)
的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù)),以原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸,取相同的長(zhǎng)度單位建立極坐標(biāo)系,圓
的極坐標(biāo)方程為
.
(1)求圓
的直角坐標(biāo)方程,并寫出圓心和半徑;
(2)若直線
與圓
交于
兩點(diǎn),求
的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分14分)已知函數(shù)
.
(Ⅰ)求函數(shù)
的單調(diào)遞增區(qū)間;
(Ⅱ)證明:當(dāng)
時(shí),
;
(Ⅲ)確定實(shí)數(shù)
的所有可能取值,使得存在
,當(dāng)
時(shí),恒有
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖如示的多面體中,平面
平面
,四邊形
是邊長(zhǎng)為
的正方形,
∥
,且
.
(1)若
分別是
中點(diǎn),求證:
∥平面![]()
(2)求此多面體
的體積
![]()
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
討論
函數(shù)的單調(diào)性;
設(shè)
的兩個(gè)零點(diǎn)是
,
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E:
的右焦點(diǎn)為
,離心率為
,過
作與x軸垂直的直線與橢圓交于P,Q點(diǎn),若|PQ|=
.
(1)求橢圓E的方程;
(2)設(shè)過
的直線l的斜率存在且不為0,直線l交橢圓于A,B兩點(diǎn),若以AB為直徑的圓過橢圓左焦點(diǎn)
,求直線l的方程.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com