【題目】已知函數(shù)
,其中
.
(Ⅰ)當
時,求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)設
,求證:
;
(Ⅲ)若
對于
恒成立,求
的最大值.
【答案】(Ⅰ)函數(shù)
的單調(diào)增區(qū)間為
,單調(diào)減區(qū)間為
;(Ⅱ)證明見解析;(Ⅲ)
.
【解析】
(Ⅰ)利用二次求導可得
,所以
在
上為增函數(shù),進而可得函數(shù)
的單調(diào)增區(qū)間為
,單調(diào)減區(qū)間為
;(Ⅱ)利用導數(shù)可得
在區(qū)間
上存在唯一零點,所以函數(shù)
在
遞減,在
,
遞增,則
,進而可證;(Ⅲ)條件等價于
對于
恒成立,構(gòu)造函數(shù)
,利用導數(shù)可得
的單調(diào)性,即可得到
的最小值為
,再次構(gòu)造函數(shù)
(a)
,
,利用導數(shù)得其單調(diào)區(qū)間,進而求得最大值.
(Ⅰ)當
時,
,
則
,所以
,
又因為
,所以
在
上為增函數(shù),
因為
,所以當
時,
,
為增函數(shù),
當
時,
,
為減函數(shù),
即函數(shù)
的單調(diào)增區(qū)間為
,單調(diào)減區(qū)間為
;
(Ⅱ)
,
則令
,則
(1)
,
,
所以
在區(qū)間
上存在唯一零點,
設零點為
,則
,且
,
當
時,
,當
,
,
,
所以函數(shù)
在
遞減,在
,
遞增,
,
由
,得
,所以
,
由于
,
,從而
;
(Ⅲ)因為
對于
恒成立,即
對于
恒成立,
不妨令
,
因為
,
,
所以
的解為
,
則當
時,
,
為增函數(shù),
當
時,
,
為減函數(shù),
所以
的最小值為
,
則
,
不妨令
(a)
,
,
則
(a)
,解得
,
所以當
時,
(a)
,
(a)為增函數(shù),
當
時,
(a)
,
(a)為減函數(shù),
所以
(a)的最大值為
,
則
的最大值為
.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PC⊥平面ABCD,點M為PB中點,底面ABCD為梯形,AB∥CD,AD⊥CD,AD=CD=PC=
AB.
![]()
(1)證明:CM∥平面PAD;
(2)若四棱錐P-ABCD的體積為4,求點M到平面PAD的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校設計了一個實驗考察方案:考生從6道備選題中隨機抽取3道題,按照題目要求獨立完成全部實驗操作,規(guī)定:至少正確完成其中的2道題便可通過.已知6道備選題中考生甲有4道能正確完成,2道題不能完成;考生乙每題正確完成的概率都是
,且每題正確完成與否互不影響.
(Ⅰ)求甲考生通過的概率
(Ⅱ)求甲乙兩考生正確完成題數(shù)的概率分布列和數(shù)學期望;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系
中,已知曲線
(
為參數(shù)),以坐標原點
為極點,
軸的非負半軸為極軸建立極坐標系,直線
的極坐標方程為:
.
(1)求直線
和曲線
的直角坐標方程;
(2)
,直線
和曲線
交于
、
兩點,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近幾年
市加大霧霾治理的投入,空氣質(zhì)量與前幾年相比有了很大改善,并于
年
市入選中國空氣優(yōu)良城市
.已知該市設有
個監(jiān)測站用于監(jiān)測空氣質(zhì)量指數(shù)(
),其中在輕度污染區(qū)、中度污染區(qū)、重度污染區(qū)分別設有
、
、
個監(jiān)測站,并以
個監(jiān)測站測得的
的平均值為依據(jù)播報該市的空氣質(zhì)量.
![]()
(1)若某日播報的
為
,已知輕度污染區(qū)
平均值為
,中度污染區(qū)
平均值為
,求重度污染區(qū)
平均值;
(2)如圖是
年
月份
天的
的頻率分布直方圖,
月份僅有
天
在
內(nèi).
①某校參照官方公布的
,如果周日
小于
就組織學生參加戶外活動,以統(tǒng)計數(shù)據(jù)中的頻率為概率,求該校學生周日能參加戶外活動的概率;
②環(huán)衛(wèi)部門從
月份
不小于
的數(shù)據(jù)中抽取兩天的數(shù)據(jù)進行研究,求抽取的這兩天中
值在
的天數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面坐標系中
中,已知直線l的參考方程為
(t為參數(shù)),曲線C的參數(shù)方程為
(s為參數(shù)).設P為曲線C上的動點,
(Ⅰ)求直線l和曲線C的直角坐標方程;
(Ⅱ)求點P到直線l的距離的最小值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com