設(shè)
是數(shù)列
的前
項和,對于任意
總有![]()
。
(I)求數(shù)列
的通現(xiàn)公式![]()
(Ⅱ)當(dāng)
。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)
滿足
,且![]()
(1)當(dāng)
時,求
的表達(dá)式;
(2)設(shè)
,
,求證:
;w.w.w.k.s.5.u.c.o.m ![]()
(3)設(shè)
,對每一個
,在
與
之間插入
個
,得到新數(shù)列
,設(shè)
是數(shù)列
的前
項和,試問是否存在正整數(shù)
,使
?若存在求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè)
為數(shù)列
的前
項和,對任意的
N
,都有![]()
為常數(shù),且
.(1)求證:數(shù)列
是等比數(shù)列;
(2)設(shè)數(shù)列
的公比
,數(shù)列
滿足
,
N![]()
,求數(shù)列
的通項公式;(3)在滿足(2)的條件下,求證:數(shù)列
的前
項和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年上海市楊浦區(qū)高三上學(xué)期學(xué)業(yè)質(zhì)量調(diào)研理科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)
是數(shù)列
的前
項和,對任意
都有
成立, (其中
、
、
是常數(shù)).
(1)當(dāng)
,
,
時,求
;
(2)當(dāng)
,
,
時,
①若
,
,求數(shù)列
的通項公式;
②設(shè)數(shù)列
中任意(不同)兩項之和仍是該數(shù)列中的一項,則稱該數(shù)列是“
數(shù)列”.
如果
,試問:是否存在數(shù)列
為“
數(shù)列”,使得對任意
,都有
,且
.若存在,求數(shù)列
的首項
的所
有取值構(gòu)成的集合;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆廣東省“十!备呷谝淮温(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)
為數(shù)列
的前
項和,對任意的
,都有
(
為正常數(shù)).
(1)求證:數(shù)列
是等比數(shù)列;
(2)數(shù)列
滿足
求數(shù)列
的通項公式;
(3)在滿足(2)的條件下,求數(shù)列
的前
項和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆湖北省咸寧赤壁市期中新四校聯(lián)考高一(理科)數(shù)學(xué)試卷 題型:解答題
設(shè)數(shù)列
的前
項和為
,
,
.
⑴求證:數(shù)列
是等差數(shù)列.
⑵設(shè)
是數(shù)列
的前
項和,求使
對所有的
都成立的最大正整數(shù)
的值. (本題滿分12分)
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com