已知函數(shù)
.
(Ⅰ)求
在
處的切線方程;
(Ⅱ)求
的單調(diào)區(qū)間;
(Ⅲ)若
,求證:
.
(Ⅰ)
;(Ⅱ)當(dāng)
,
的單調(diào)增區(qū)間
;當(dāng)
時(shí),函數(shù)
的單調(diào)遞增區(qū)間是
,單調(diào)遞減區(qū)間是
;(Ⅲ)詳見解析.
解析試題分析:(Ⅰ)求出導(dǎo)數(shù)及切點(diǎn),利用直線的點(diǎn)斜式方程即可得切線方程.
(Ⅱ)將
求導(dǎo),利用
求得其遞增區(qū)間,
求得其遞減區(qū)間.
在本題中,
,由
得:
.當(dāng)
,
的單調(diào)增區(qū)間
;
當(dāng)
時(shí),函數(shù)
的單調(diào)遞增區(qū)間是
,單調(diào)遞減區(qū)間是
.
(Ⅲ)本題首先要考慮的是,所要證的不等式與函數(shù)
有什么關(guān)系?待證不等式可做如下變形:
,最后這個(gè)不等式與
有聯(lián)系嗎?我們往下看.
,所以在
上
是增函數(shù).
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/62/c/r6eih1.png" style="vertical-align:middle;" />,所以![]()
即
從這兒可以看出,有點(diǎn)聯(lián)系了.同理
,
所以
,
與待證不等式比較,只要
問題就解決了,而這由重要不等式可證,從而問題得證.
試題解析:(Ⅰ)
,
,所以切線為:
即
3分
(Ⅱ)
,
, 4分
,
, 5分
當(dāng)
,
的單調(diào)增區(qū)間
; 6分
當(dāng)
時(shí),函數(shù)
的單調(diào)遞增區(qū)間是
,單調(diào)遞減區(qū)間是
. 8分
(Ⅲ)
,所以在
上
是增函數(shù),
上是減函數(shù)
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/62/c/r6eih1.png" style="vertical-align:middle;" />,所以![]()
即
,同理
.
所以![]()
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4e/3/p0b232.png" style="vertical-align:middle;" />當(dāng)且僅當(dāng)“
”時(shí),取等號(hào).
又
,
,
所以
,所以
,
所以:
. 14分
考點(diǎn):1、導(dǎo)數(shù)的應(yīng)用;2、不等式的證明.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
,
,其中
,且
.
⑴當(dāng)
時(shí),求函數(shù)
的最大值;
⑵求函數(shù)
的單調(diào)區(qū)間;
⑶設(shè)函數(shù)
若對(duì)任意給定的非零實(shí)數(shù)
,存在非零實(shí)數(shù)
(
),使得
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
(
).
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)求證:當(dāng)
時(shí),對(duì)于任意
,總有
成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,其中a>0.
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若直線
是曲線
的切線,求實(shí)數(shù)a的值;
(Ⅲ)設(shè)
,求
在區(qū)間
上的最大值(其中e為自然對(duì)的底數(shù))。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某地區(qū)注重生態(tài)環(huán)境建設(shè),每年用于改造生態(tài)環(huán)境總費(fèi)用為
億元,其中用于風(fēng)景區(qū)改造為
億元。該市決定建立生態(tài)環(huán)境改造投資方案,該方案要求同時(shí)具備下列三個(gè)條件:①每年用于風(fēng)景區(qū)改造費(fèi)用
隨每年改造生態(tài)環(huán)境總費(fèi)用
增加而增加;②每年改造生態(tài)環(huán)境總費(fèi)用至少
億元,至多
億元;③每年用于風(fēng)景區(qū)改造費(fèi)用
不得低于每年改造生態(tài)環(huán)境總費(fèi)用
的15%,但不得高于每年改造生態(tài)環(huán)境總費(fèi)用
的25%.
若
,
,請(qǐng)你分析能否采用函數(shù)模型y=
作為生態(tài)環(huán)境改造投資方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(I)函數(shù)
在區(qū)間
上是增函數(shù)還是減函數(shù)?證明你的結(jié)論;
(II)當(dāng)
時(shí),
恒成立,求整數(shù)
的最大值;
(Ⅲ)試證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1)當(dāng)
時(shí),求
的極值;(2)當(dāng)
時(shí),討論
的單調(diào)性;
(3)若對(duì)任意的
恒有
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)h(x)=ax2+bx+c(其中c<3),其導(dǎo)函數(shù)
的圖象如圖,f(x)=6lnx+h(x)![]()
(1)求f(x)在x=3處的切線斜率;
(2)若f(x)在區(qū)間(m,m+
)上是單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;
(3)若對(duì)任意k∈[-1,1],函數(shù)y=kx(x∈(0,6])的圖象總在函數(shù)y=f(x)圖象的上方,求c的取值范圍
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com