【題目】已知
,
.
(Ⅰ)求
的值;
(Ⅱ)求
的值.
【答案】(1)
;(2)
.
【解析】解答:
試題分析:(1) 由
,得到2sinxcosx=
,進(jìn)而得到(sinxcosx)2=12sinxcosx=
,所以sinxcosx=
;(2)由(1)得:sinx=
,cosx=
,tanx=
,
利用商數(shù)關(guān)系化弦為切,帶入即可.
試題解析:
(Ⅰ)因?yàn)?/span>
,
所以1+2sinxcosx=
,2sinxcosx=
,
因?yàn)?/span>
,所以sinx<0,cosx>0,
所以sinxcosx<0,(sinxcosx)2=12sinxcosx=
,
所以sinxcosx=![]()
(Ⅱ)由(Ⅰ)知,sinx+cosx=
,sinxcosx=
,解得sinx=
,cosx=
,tanx=![]()
4sinxcosxcos2x=
=
=![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩矩形ABCD與ADEF所在的平面互相垂直,AB=1,若將△DEF沿直線FD翻折,使得點(diǎn)E落在邊BC上(即點(diǎn)P),則當(dāng)AD取最小值時(shí),邊AF的長(zhǎng)是;此時(shí)四面體F﹣ADP的外接球的半徑是 . ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
其中
為自然對(duì)數(shù)的底數(shù).
(Ⅰ)討論函數(shù)
的單調(diào)性及極值;
(Ⅱ)若不等式
在
內(nèi)恒成立,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=sin(
﹣
)﹣2cos2
+1. (Ⅰ)求f(x)的最小正周期;
(Ⅱ)若函數(shù)y=g(x)與y=f(x)的圖象關(guān)于直線x=1對(duì)稱,求當(dāng)x∈[0,
]時(shí)y=g(x)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為4的菱形
中,
,點(diǎn)
、
分別在邊
、
上.點(diǎn)
與點(diǎn)
、
不重合,
,
,沿
將
翻折到
的位置,使平面
平面
.
![]()
(Ⅰ)求證:
平面
;
(Ⅱ)記三棱錐
的體積為
,四棱錐
的體積為
,且
,求此時(shí)線段
的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等比數(shù)列{an}的各項(xiàng)均為正數(shù),且2a1+3a2=1,a32=9a2a6 , (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log3a1+log3a2+…+log3an , 求數(shù)列{
}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項(xiàng)數(shù)列{an}滿足a1=1,(n+1)a2n+1+an+1an﹣na
=0,數(shù)列{bn}的前n項(xiàng)和為Sn且Sn=1﹣bn .
(1)求{an}和{bn}的通項(xiàng);
(2)令cn=
, ①求{cn}的前n項(xiàng)和Tn;
②是否存在正整數(shù)m滿足m>3,c2 , c3 , cm成等差數(shù)列?若存在,請(qǐng)求出m;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,OA、OB是兩條公路(近似看成兩條直線),
,在∠AOB內(nèi)有一紀(jì)念塔P(大小忽略不計(jì)),已知P到直線OA、OB的距離分別為PD、PE,PD=6千米,PE=12千米.現(xiàn)經(jīng)過紀(jì)念塔P修建一條直線型小路,與兩條公路OA、OB分別交于點(diǎn)M、N. ![]()
(1)求紀(jì)念塔P到兩條公路交點(diǎn)O處的距離;
(2)若紀(jì)念塔P為小路MN的中點(diǎn),求小路MN的長(zhǎng).
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com