分析 化簡(jiǎn)集合M={-2,-1,0,1,2},從而化簡(jiǎn)集合A{-1,0,3},B={(-2,3),(-1,0),(0,-1),(1,0),(2,3)},C={-2,-1,0,1,2}.
解答 解:M={n||n|≤2,n∈Z}={-2,-1,0,1,2},
A={y|y=x2-1,x∈M}={-1,0,3},
B={(x,y)|y=x2-1,x∈M},
={(-2,3),(-1,0),(0,-1),(1,0),(2,3)},
C={x|y=x2-1,x∈M}={-2,-1,0,1,2}.
點(diǎn)評(píng) 本題考查了集合的化簡(jiǎn)與應(yīng)用,同時(shí)考查了列舉法的應(yīng)用,屬于基礎(chǔ)題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -1<m<4 | B. | -1<m<3 | C. | 1<m<4 | D. | 1<m<3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2-$\sqrt{3}$,2+$\sqrt{3}$ | B. | 2-$\sqrt{5}$,2+$\sqrt{5}$ | C. | 2-$\sqrt{3}$,2+$\sqrt{5}$ | D. | 2+$\sqrt{3}$,2+$\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com