(本小題滿分14分)
已知![]()
![]()
(Ⅰ)求
;
(Ⅱ)判斷并證明
的奇偶性與單調(diào)性;
(Ⅲ)若對任意的
,不等式
恒成立,求
的取值范圍。
(1)則![]()
;(2)函數(shù)
為奇函數(shù)。證明見解析。
(3)
.
解析試題分析:(1)利用換元法:令t=logax⇒x=at,代入可得f(t)從而可得函數(shù)f(x)的解析式
(2)由(1)得f(x)定義域為R,可求函數(shù)的定義域,先證奇偶性:代入f(-x)=-f(x),從而可得函數(shù)為奇函數(shù)。再證單調(diào)性:利用定義任取x1<x2,利用作差比較f(x1)-f(x2)的正負(fù),從而確當(dāng)f(x1)與f(x2)的大小,進而判斷函數(shù)的單調(diào)性
(3)根據(jù)上面的單調(diào)性的證明以及定義域得到不等式的求解。
解:(1)令![]()
則![]()
………3分
(2)![]()
∴函數(shù)
為奇函數(shù)。 ………5分
當(dāng)
,任取![]()
![]()
![]()
-![]()
=
=![]()
=![]()
,![]()
![]()
類似可證明當(dāng)
,綜上,無論
,
上都是增函數(shù)。 ………9分
(3)不等式化為![]()
∵
上都是增函數(shù),∴
恒成立
即![]()
對
恒成立,∴![]()
故
的取值范圍
. ………14分
考點:本試題主要考查了函數(shù)性質(zhì)的三點:①利用換元法求函數(shù)的解析式,這是求函數(shù)解析式中最為重要的方法,要注意掌握,解答此類問題的注意點:換元后要確定新元的范圍,從而可得所要求的函數(shù)的定義域②函數(shù)奇偶性的判斷。
點評:解題的關(guān)鍵是利用奇偶性的定義③利用定義判斷函數(shù)單調(diào)性的步驟(i)任設(shè)x1<x2(也可x1>x2)(ii)作差f(x1)-f(x2)(iii)定號,給出結(jié)論.
科目:高中數(shù)學(xué) 來源: 題型:解答題
(13分) 設(shè)函數(shù)
.
(1)當(dāng)
時,求函數(shù)
在
上的最大值;
(2)記函數(shù)
,若函數(shù)
有零點,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
對于定義域為D的函數(shù)
,若同時滿足下列條件:①
在D內(nèi)單調(diào)遞增或單調(diào)遞減;②存在區(qū)間[
]
,使
在[
]上的值域為[
];那么把
(
)叫閉函數(shù).
(1)求閉函數(shù)
符合條件②的區(qū)間[
];
(2)判斷函數(shù)
是否為閉函數(shù)?并說明理由;
(3)若函數(shù)
是閉函數(shù),求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
設(shè)
,且
,定義在區(qū)間
內(nèi)的函數(shù)
是奇函數(shù).
(1)求
的取值范圍;
(2)討論函數(shù)
的單調(diào)性并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)如下左圖,已知底角為450的等腰三角形ABC,底邊AB的長為2,當(dāng)一條垂直于AB的直線L從左至右移動時,直線L把三角形ABC分成兩部分,令A(yù)D=
,
(1) 試寫出左邊部分的面積
與x的函數(shù)解析式;
(2) 在給出的坐標(biāo)系中畫出函數(shù)的大致圖象。
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知冪函數(shù)
為偶函數(shù),且在區(qū)間
上是單調(diào)遞減函數(shù),
⑴求函數(shù)
的解析式;
⑵討論函數(shù)
的奇偶性。 (12分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(附加題)本小題滿分10分
已知
是定義在
上單調(diào)函數(shù),對任意實數(shù)
有:
且
時,
.
(1)證明:
;
(2)證明:當(dāng)
時,
;
(3)當(dāng)
時,求使
對任意實數(shù)
恒成立的參數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com