【題目】已知斜率為k(k≠0)的直線
交橢圓
于
兩點。
(1)記直線
的斜率分別為
,當
時,證明:直線
過定點;
(2)若直線
過點
,設
與
的面積比為
,當
時,求
的取值范圍。
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在區(qū)間
上的函數(shù)
,
(1)判定函數(shù)
在
的單調(diào)性,并用定義證明;
(2)設方程
有四個不相等的實根
.
①證明:
;
②在
是否存在實數(shù)
,使得函數(shù)
在區(qū)間
單調(diào),且
的取值范圍為
,若存在,求出
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=(a﹣bx3)ex﹣
,且函數(shù)f(x)的圖象在點(1,e)處的切線與直線x﹣(2e+1)y﹣3=0垂直.
(Ⅰ)求a,b;
(Ⅱ)求證:當x∈(0,1)時,f(x)>2.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題正確個數(shù)為( )
(1)若
,當
時,則
在
上是單調(diào)遞增函數(shù);
(2)
單調(diào)減區(qū)間為
;
(3)
| -3 | -2 | -1 | 0 | 1 | 2 | 3 |
| 4 | 3 | 2 | 1 | -2 | -3 | -4 |
上述表格中的函數(shù)是奇函數(shù);
(4)若
是
上的偶函數(shù),則
都在
圖像上.
A.0B.1個C.2個D.3個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】學習雷鋒精神前半年內(nèi)某單位餐廳的固定餐椅經(jīng)常有損壞,學習雷鋒精神時全修好;單位對學習雷鋒精神前后各半年內(nèi)餐椅的損壞情況作了一個大致統(tǒng)計,具體數(shù)據(jù)如表:
損壞餐椅數(shù) | 未損壞餐椅數(shù) | 總計 | |
學習雷鋒精神前 | 50 | 150 | 200 |
學習雷鋒精神后 | 30 | 170 | 200 |
總計 | 80 | 320 | 400 |
求:學習雷鋒精神前后餐椅損壞的百分比分別是多少?并初步判斷損毀餐椅數(shù)量與學習雷鋒精神是否有關?
請說明是否有
以上的把握認為損毀餐椅數(shù)量與學習雷鋒精神
有關?
參考公式:
,
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
,
.
(1)當
時,求函數(shù)
圖象在點
處的切線方程;
(2)當
時,討論函數(shù)
的單調(diào)性;
(3)是否存在實數(shù)
,對任意
,
且
有
恒成立?若存在,求出
的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設
,函數(shù)
.
(1) 若
,求曲線
在
處的切線方程;
(2)求函數(shù)
單調(diào)區(qū)間
(3) 若
有兩個零點
,求證:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.
(1)若a=-2,求B∩A,B∩(UA);(2)若A∪B=A,求實數(shù)a的取值范圍.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com