分析 先求出函數(shù)p(x)的解析式,通過求導,解關于導函數(shù)的不等式,從而求出函數(shù)的遞減區(qū)間.
解答 解:∵函數(shù)f(x)=x,g(x)=-$\frac{4}{x}$,
∴p(x)=f(x)-g(x)=x+$\frac{4}{x}$,
∴p′(x)=1-$\frac{4}{{x}^{2}}$=$\frac{(x+2)(x-2)}{{x}^{2}}$,
令p′(x)<0,解得:-2<x<2且x≠0,
故函數(shù)p(x)在(-2,0)和(0,2)遞減.
點評 本題考查了求函數(shù)的解析式問題,考查函數(shù)的單調(diào)性,是一道基礎題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{π}{2}$ | B. | -$\frac{π}{4}$ | C. | π | D. | 2π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 函數(shù)y=f(x)為R上可導函數(shù),則f′(x0)=0是x0為函數(shù)f(x)極值點的充要條件 | |
| B. | 命題“存在x∈R,x2+x-1<0”的否定是“任意x∈R,x2+x-1>0” | |
| C. | 命題“在銳角△ABC中,有 sinA>cosB”為真命題 | |
| D. | “b=0”是“函數(shù)f(x)=ax2+bx+c是偶函數(shù)”的充分不必要條件 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com