[2014·河北教學(xué)質(zhì)量監(jiān)測]已知數(shù)列{an}滿足:a1=1,an+1=
(n∈N*).若bn+1=(n-λ)(
+1)(n∈N*),b1=-λ,且數(shù)列{bn}是單調(diào)遞增數(shù)列,則實(shí)數(shù)λ的取值范圍為( )
| A.λ>2 | B.λ>3 | C.λ<2 | D.λ<3 |
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
中,
,對(duì)
總有
成立,
(1)計(jì)算
的值;
(2)根據(jù)(1)的結(jié)果猜想數(shù)列的通項(xiàng)
,并用數(shù)學(xué)歸納法證明
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{
}滿足
+
=2n+1 (
)
(1)求出
,
,
的值;
(2)由(1)猜想出數(shù)列{
}的通項(xiàng)公式
,并用數(shù)學(xué)歸納法證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等比數(shù)列
滿足:
,公比
,數(shù)列
的前
項(xiàng)和為
,且
.
(1)求數(shù)列
和數(shù)列
的通項(xiàng)
和
;
(2)設(shè)
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
,
滿足
,
,
,數(shù)列
的前
項(xiàng)和為
,
.
(1)求數(shù)列
的通項(xiàng)公式;
(2)求證:
;
(3)求證:當(dāng)
時(shí),
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
和
的通項(xiàng)公式分別為
,
.將
與
中的公共項(xiàng)按照從小到大的順序排列構(gòu)成一個(gè)新數(shù)列記為
.
(1)試寫出
,
,
,
的值,并由此歸納數(shù)列
的通項(xiàng)公式;
(2)證明你在(1)所猜想的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
,用
表示
當(dāng)
時(shí)的函數(shù)值中整數(shù)值的個(gè)數(shù).
(1)求
的表達(dá)式.
(2)設(shè)
,求
.
(3)設(shè)
,若
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若無窮數(shù)列
滿足:①對(duì)任意
,
;②存在常數(shù)
,對(duì)任意
,
,則稱數(shù)列
為“
數(shù)列”.
(Ⅰ)若數(shù)列
的通項(xiàng)為![]()
,證明:數(shù)列
為“
數(shù)列”;
(Ⅱ)若數(shù)列
的各項(xiàng)均為正整數(shù),且數(shù)列
為“
數(shù)列”,證明:對(duì)任意
,
;
(Ⅲ)若數(shù)列
的各項(xiàng)均為正整數(shù),且數(shù)列
為“
數(shù)列”,證明:存在
,數(shù)列
為等差數(shù)列.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com