【題目】如圖所示的多面體,它的正視圖為直角三角形,側(cè)視圖為正三角形,俯視圖為正方形(尺寸如圖所示),E為VB的中點(diǎn). ![]()
(1)求證:VD∥平面EAC;
(2)求二面角A﹣VB﹣D的余弦值.
【答案】
(1)證明:由正視圖可知:平面VAB⊥平面ABCD
連接BD交AC于O點(diǎn),連接EO,由已知得BO=OD,VE=EB
∴VD∥EO
又VD平面EAC,EO平面EAC
∴VD∥平面EAC;
![]()
(2)解:設(shè)AB的中點(diǎn)為P,則VP⊥平面ABCD,建立如圖所示的坐標(biāo)系,
則
=(0,1,0)
設(shè)平面VBD的法向量為 ![]()
∵ ![]()
∴由
,可得
,∴可取
=(
,
,1)
∴二面角A﹣VB﹣D的余弦值cosθ=
= ![]()
![]()
【解析】(1)欲證VD∥平面EAC,根據(jù)直線與平面平行的判定定理可知只需證VD與平面EAC內(nèi)一直線平行即可,而連接BD交AC于O點(diǎn),連接EO,由已知易得VD∥EO,VD平面EAC,EO平面EAC,滿足定理?xiàng)l件;(2)設(shè)AB的中點(diǎn)為P,則VP⊥平面ABCD,建立坐標(biāo)系,利用向量的夾角公式,可求二面角A﹣VB﹣D的余弦值.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于
的函數(shù)
.
(
)當(dāng)
時(shí),求函數(shù)
在點(diǎn)
處的切線方程.
(
)設(shè)
,討論函數(shù)
的單調(diào)區(qū)間.
(
)若函數(shù)
沒有零點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)若函數(shù)
在
處的切線平行于直線
,求實(shí)數(shù)a的值;
(Ⅱ)判斷函數(shù)
在區(qū)間
上零點(diǎn)的個(gè)數(shù);
(Ⅲ)在(Ⅰ)的條件下,若在
上存在一點(diǎn)
,使得
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校組織學(xué)生參加英語測試,成績的頻率分布直方圖如圖,數(shù)據(jù)的分組依次為[20,40),[40,60),[60,80),[80,100],若低于60分的人數(shù)是15人,則該班的學(xué)生人數(shù)是( ) ![]()
A.45
B.50
C.55
D.60
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系內(nèi),已知A(1,a),B(﹣5,﹣3),C(4,0);
(1)當(dāng)a∈(
,3)時(shí),求直線AC的傾斜角α的取值范圍;
(2)當(dāng)a=2時(shí),求△ABC的BC邊上的高AH所在直線方程l.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=cos2x+2
sinxcosx﹣sin2x.
(1)求f(x)的最小正周期和值域;
(2)在△ABC中,角A,B,C所對的邊分別是a,b,c,若
且a2=bc,試判斷△ABC的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩定點(diǎn)
,
,曲線
上的動(dòng)點(diǎn)
滿足
,直線
與曲線
的另一個(gè)交點(diǎn)為
.
(Ⅰ)求曲線
的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)點(diǎn)
,若
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若a∈R,則“關(guān)于x的方程x2+ax+1=0無實(shí)根”是“z=(2a﹣1)+(a﹣1)i(其中i表示虛數(shù)單位)在復(fù)平面上對應(yīng)的點(diǎn)位于第四象限”的( )
A.充分非必要條件
B.必要非充分條件
C.充要條件
D.既非充分又非必要條件
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com