【題目】已知集合A=
. (Ⅰ)求A∩B,(RB)∪A;
(Ⅱ)若CA,求實數(shù)a的取值范圍.
【答案】解:(Ⅰ)解:由
得,x2﹣5x+6≤2, 即x2﹣5x+4≤0,解得1≤x≤4,則A={x|1≤x≤4}
由
得,
,
由
得(x﹣1)(x﹣3)>0,解得x<1或x>3,
由
得
,則(﹣x﹣1)(x﹣1)<0,
即(x+1)(x﹣1)>0,解得x<﹣1或x>1,
所以B={x|x<﹣1或x>3},RB={x|﹣1≤x≤3},
所以A∩B={x|3<x≤4},(RB)∪A={x|﹣1≤x≤4};
(Ⅱ)解:由CA、C≠得,
,
解得2≤a≤4,
∴實數(shù)a的取值范圍是[2,4]
【解析】(Ⅰ)由指數(shù)函數(shù)的性質(zhì)、一元二次不等式的解法求出A,由對數(shù)函數(shù)的性質(zhì)、分式不等式的解法求出B,由補集的運算求出RB,由交集、并集的運算分別求出A∩B,(RB)∪A;(Ⅱ)根據(jù)題意和子集的定義列出不等式,求出實數(shù)a的取值范圍.
【考點精析】解答此題的關(guān)鍵在于理解交、并、補集的混合運算的相關(guān)知識,掌握求集合的并、交、補是集合間的基本運算,運算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進而用集合語言表達,增強數(shù)形結(jié)合的思想方法.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
是奇函數(shù),f(x)=lg(10x+1)+bx是偶函數(shù).
(1)求a和b的值.
(2)說明函數(shù)g(x)的單調(diào)性;若對任意的t∈[0,+∞),不等式g(t2﹣2t)+g(2t2﹣k)>0恒成立,求實數(shù)k的取值范圍.
(3)設(shè)
,若存在x∈(﹣∞,1],使不等式g(x)>h[lg(10a+9)]成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB切⊙O于點B,直線AO交⊙O于D,E兩點,BC⊥DE,垂足為C.![]()
(1)證明:∠CBD=∠DBA;
(2)若AD=3DC,BC=
,求⊙O的直徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的多面體,它的正視圖為直角三角形,側(cè)視圖為正三角形,俯視圖為正方形(尺寸如圖所示),E為VB的中點. ![]()
(1)求證:VD∥平面EAC;
(2)求二面角A﹣VB﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給n個自上而下相連的正方形著黑色或白色.當(dāng)n≤4時,在所有不同的著色方案中,黑色正方形互不相鄰的著色方案如圖所示,由此推斷,當(dāng)n=6時,至少有兩個黑色正方形相鄰的著色方案共有( )種. ![]()
A.21
B.32
C.43
D.54
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=a,an+1=
(n∈N*).
(1)求a2 , a3 , a4;
(2)猜測數(shù)列{an}的通項公式,并用數(shù)學(xué)歸納法證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若曲線
在點
處的切線方程為
,求a,b的值;
(2)如果
是函數(shù)
的兩個零點,
為函數(shù)
的導(dǎo)數(shù),證明: ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=asinx﹣bcosx(a,b為常數(shù),a≠0,x∈R)在x=
處取得最大值,則函數(shù)y=f(x+
)是( )
A.奇函數(shù)且它的圖象關(guān)于點(π,0)對稱
B.偶函數(shù)且它的圖象關(guān)于點(
,0)對稱
C.奇函數(shù)且它的圖象關(guān)于點(
,0)對稱
D.偶函數(shù)且它的圖象關(guān)于點(π,0)對稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于數(shù)列
,
,
,
,若滿足
,則稱數(shù)列
為“
數(shù)列”.
若存在一個正整數(shù)
,若數(shù)列
中存在連續(xù)的
項和該數(shù)列中另一個連續(xù)的
項恰好按次序?qū)?yīng)相等,則稱數(shù)列
是“
階可重復(fù)數(shù)列”,
例如數(shù)列
因為
,
,
,
與
,
,
,
按次序?qū)?yīng)相等,所以數(shù)列
是“
階可重復(fù)數(shù)列”.
(I)分別判斷下列數(shù)列
,
,
,
,
,
,
,
,
,
.是否是“
階可重復(fù)數(shù)列”?如果是,請寫出重復(fù)的這
項;
(II)若項數(shù)為
的數(shù)列
一定是 “
階可重復(fù)數(shù)列”,則
的最小值是多少?說明理由;
(III)假設(shè)數(shù)列
不是“
階可重復(fù)數(shù)列”,若在其最后一項
后再添加一項
或
,均可 使新數(shù)列是“
階可重復(fù)數(shù)列”,且
,求數(shù)列
的最后一項
的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com