【題目】已知拋物線(xiàn)C:x2=2y,過(guò)點(diǎn)(0,2)作直線(xiàn)l交拋物線(xiàn)于A、B兩點(diǎn).
(1)證明:OA⊥OB;
(2)若直線(xiàn)l的斜率為1,過(guò)點(diǎn)A、B分別作拋物線(xiàn)的切線(xiàn)l1,l2,若直線(xiàn)l1,l2,相交于點(diǎn)P,直線(xiàn)l1,l2交x軸分別于點(diǎn)M,N,求△MNP的外接圓的方程.
【答案】(1)證明見(jiàn)解析(2)![]()
【解析】
(1)設(shè)直線(xiàn)
:
,設(shè)
,
,聯(lián)立方程得到
,
,故
,得到證明.
(2)求導(dǎo)得到
,得到切線(xiàn)方程
和
,計(jì)算點(diǎn)
,設(shè)
的外接圓的方程為:
,計(jì)算得到
,
,
,得到答案.
(1)顯然直線(xiàn)
的斜率存在,設(shè)直線(xiàn)
:
,設(shè)
,![]()
聯(lián)立
得
,
![]()
,
,
,
![]()
,![]()
.
(2)![]()
,![]()
,
,
![]()
![]()
切線(xiàn)
:
即
,同理可得切線(xiàn)
:
.
令
,則
,
,聯(lián)立
得點(diǎn)
,
設(shè)
的外接圓的方程為:
,令
,則
.
由韋達(dá)定理可得
,
,
![]()
,
且
,![]()
,
則圓的方程為:
,即
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是我國(guó)古代內(nèi)容極為豐富的數(shù)學(xué)名著,書(shū)中有一個(gè)“引葭赴岸”問(wèn)題:“今有池方一丈,葭生其中央.出水一尺,引葭赴岸,適與岸齊.問(wèn)水深、葭長(zhǎng)各幾何?”其意思為“今有水池1丈見(jiàn)方(即
尺),蘆葦生長(zhǎng)在水的中央,長(zhǎng)出水面的部分為1尺.將蘆葦向池岸牽引,恰巧與水岸齊接(如圖所示).試問(wèn)水深、蘆葦?shù)拈L(zhǎng)度各是多少?假設(shè)
,現(xiàn)有下述四個(gè)結(jié)論:
①水深為12尺;②蘆葦長(zhǎng)為15尺;③
;④
.
其中所有正確結(jié)論的編號(hào)是( )
![]()
A.①③B.①③④C.①④D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
:
(
)的左、右焦點(diǎn)分別為
,
,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線(xiàn)
相切,點(diǎn)
在橢圓
上,
,
,
(1)求橢圓
的方程;
(2)若直線(xiàn)
:
與橢圓交于
,
兩點(diǎn),點(diǎn)
,若
,求斜率
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(1,
)是離心率為
的橢圓C:
(a>b>0)上的一點(diǎn),斜率為
的直線(xiàn)BD交橢圓C于B、D兩點(diǎn),且A、B、D三點(diǎn)不重合
(1)求橢圓C的方程;
(2)求證:直線(xiàn)AB,AD的斜率之和為定值
(3)△ABD面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在最新公布的湖南新高考方案中,“
”模式要求學(xué)生在語(yǔ)數(shù)外3門(mén)全國(guó)統(tǒng)考科目之外,在歷史和物理2門(mén)科目中必選且只選1門(mén),再?gòu)幕瘜W(xué)、生物、地理、政治4門(mén)科目中任選2門(mén),后三科的高考成績(jī)按新的規(guī)則轉(zhuǎn)換后計(jì)入高考總分.相應(yīng)地,高校在招生時(shí)可對(duì)特定專(zhuān)業(yè)設(shè)置具體的選修科目要求.雙超中學(xué)高一年級(jí)有學(xué)生1200人,現(xiàn)從中隨機(jī)抽取40人進(jìn)行選科情況調(diào)查,用數(shù)字1~6分別依次代表歷史、物理、化學(xué)、生物、地理、政治6科,得到如下的統(tǒng)計(jì)表:
序號(hào) | 選科情況 | 序號(hào) | 選科情況 | 序號(hào) | 選科情況 | 序號(hào) | 選科情況 |
1 | 134 | 11 | 236 | 21 | 156 | 31 | 235 |
2 | 235 | 12 | 234 | 22 | 235 | 32 | 236 |
3 | 235 | 13 | 145 | 23 | 245 | 33 | 235 |
4 | 145 | 14 | 135 | 24 | 235 | 34 | 135 |
5 | 156 | 15 | 236 | 25 | 256 | 35 | 156 |
6 | 245 | 16 | 236 | 26 | 156 | 36 | 236 |
7 | 256 | 17 | 156 | 27 | 134 | 37 | 156 |
8 | 235 | 18 | 236 | 28 | 235 | 38 | 134 |
9 | 235 | 19 | 145 | 29 | 246 | 39 | 235 |
10 | 236 | 20 | 235 | 30 | 156 | 40 | 245 |
(1)雙超中學(xué)規(guī)定:每個(gè)選修班最多編排50人且盡量滿(mǎn)額編班,每位老師執(zhí)教2個(gè)選修班(當(dāng)且僅當(dāng)一門(mén)科目的選課班級(jí)總數(shù)為奇數(shù)時(shí),允許這門(mén)科目的1位老師只教1個(gè)班).已知雙超中學(xué)高一年級(jí)現(xiàn)有化學(xué)、生物科目教師每科各8人,用樣本估計(jì)總體,則化學(xué)、生物兩科的教師人數(shù)是否需要調(diào)整?如果需要調(diào)整,各需增加或減少多少人?
(2)請(qǐng)創(chuàng)建列聯(lián)表,運(yùn)用獨(dú)立性檢驗(yàn)的知識(shí)進(jìn)行分析,探究是否有
的把握判斷學(xué)生“選擇化學(xué)科目”與“選擇物理科目”有關(guān).
附:![]()
| 0.100 | 0.050 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
(3)某高校
在其熱門(mén)人文專(zhuān)業(yè)
的招生簡(jiǎn)章中明確要求,僅允許選修了歷史科目,且在政治和地理2門(mén)中至少選修了1門(mén)的考生報(bào)名.現(xiàn)從雙超中學(xué)高一新生中隨機(jī)抽取3人,設(shè)具備
高校
專(zhuān)業(yè)報(bào)名資格的人數(shù)為
,用樣本的頻率估計(jì)概率,求
的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
.
(1)若曲線(xiàn)
在
處的切線(xiàn)恰與曲線(xiàn)
相切,求a的值;
(2)不等式
對(duì)一切正實(shí)數(shù)x恒成立,求a的取值范圍;
(3)已知
,若函數(shù)
在
上有且只有一個(gè)零點(diǎn),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,
是邊長(zhǎng)為6的正方形,已知
,且
并與對(duì)角線(xiàn)
交于
,現(xiàn)以
為折痕將正方形折起,且
重合,記
重合后為
,記
重合后為
.
![]()
(1)求證:平面
平面
;
(2)求平面
與平面
所成二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)訄A
過(guò)定點(diǎn)
,且與定直線(xiàn)
相切.
(1)求動(dòng)圓圓心
的軌跡
的方程;
(2)過(guò)點(diǎn)
的任一條直線(xiàn)
與軌跡
交于不同的兩點(diǎn)
,試探究在
軸上是否存在定點(diǎn)
(異于點(diǎn)
),使得
?若存在,求點(diǎn)
的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x|x﹣a|,a∈R.
(1)當(dāng)f(2)+f(﹣2)>4時(shí),求a的取值范圍;
(2)若a>0,x,y∈(﹣∞,a],不等式f(x)≤|y+3|+|y﹣a|恒成立,求a的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com