某商場(chǎng)銷(xiāo)售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷(xiāo)售量
(單位:千克)與銷(xiāo)售價(jià)格
(單位:元/千克)滿(mǎn)足關(guān)系式
其中
為常數(shù).己知銷(xiāo)售價(jià)格為5元/千克時(shí),每日可售出該商品11千克.
(1)求
的值;
(2)若該商品的成本為3元/千克,試確定銷(xiāo)售價(jià)格
的值,使商場(chǎng)每日銷(xiāo)售該商品所獲得利潤(rùn)最大.
(1)
;(2)![]()
解析試題分析:(1)商品每日的銷(xiāo)售量
與銷(xiāo)售價(jià)格
滿(mǎn)足的關(guān)系
中,只含有一個(gè)參數(shù)
,所以只需一個(gè)條件即可,已知
,代入解析式,可求
;(2)利用函數(shù)思想,列利潤(rùn)關(guān)于銷(xiāo)售價(jià)格的函數(shù)解析式,再求其最大值,利潤(rùn)=(每千克商品的利潤(rùn))
(每日銷(xiāo)售量).
試題解析:(1)∵
時(shí),
,
,∴
;
(2)銷(xiāo)售利潤(rùn)
=2+![]()
![]()
∴
于是,當(dāng)
變化時(shí),
,
的變化情況如下表,![]()
由表知,
是函數(shù)
在區(qū)間
內(nèi)的極大值點(diǎn),亦是最大值點(diǎn),所以當(dāng)
時(shí),函教
取得最大值,且最大值為42.
考點(diǎn):1、函數(shù)的應(yīng)用;2、利用導(dǎo)數(shù)求函數(shù)的最值.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(
均為正常數(shù)),設(shè)函數(shù)
在
處有極值.
(1)若對(duì)任意的
,不等式
總成立,求實(shí)數(shù)
的取值范圍;
(2)若函數(shù)
在區(qū)間
上單調(diào)遞增,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,
,![]()
(Ⅰ)若
,求函數(shù)
的極值;
(Ⅱ)若函數(shù)
在
上單調(diào)遞減,求實(shí)數(shù)
的取值范圍;
(Ⅲ)在函數(shù)
的圖象上是否存在不同的兩點(diǎn)
,使線(xiàn)段
的中點(diǎn)的橫坐標(biāo)
與直線(xiàn)
的斜率
之間滿(mǎn)足
?若存在,求出
;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
.
(Ⅰ)證明:當(dāng)
,
;
(Ⅱ)設(shè)當(dāng)
時(shí),
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
若函數(shù)
在x = 0處取得極值.
(1) 求實(shí)數(shù)
的值;
(2) 若關(guān)于x的方程
在區(qū)間[0,2]上恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)
的取值范圍;
(3) 證明:對(duì)任意的自然數(shù)n,有
恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
時(shí)下,網(wǎng)校教學(xué)越來(lái)越受到廣大學(xué)生的喜愛(ài),它已經(jīng)成為學(xué)生們課外學(xué)習(xí)的一種趨勢(shì),假設(shè)某網(wǎng)校的套題每日的銷(xiāo)售量
(單位:千套)與銷(xiāo)售價(jià)格
(單位:元/套)滿(mǎn)足的關(guān)系式
,其中
,
為常數(shù).已知銷(xiāo)售價(jià)格為4元/套時(shí),每日可售出套題21千套.
(1)求
的值;
(2)假設(shè)網(wǎng)校的員工工資,辦公等所有開(kāi)銷(xiāo)折合為每套題2元(只考慮銷(xiāo)售出的套數(shù)),試確定銷(xiāo)售價(jià)格
的值,使網(wǎng)校每日銷(xiāo)售套題所獲得的利潤(rùn)最大.(保留1位小數(shù)點(diǎn))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
.
(1)若函數(shù)
為奇函數(shù),求a的值;
(2)若
,直線(xiàn)
都不是曲線(xiàn)
的切線(xiàn),求k的取值范圍;
(3)若
,求
在區(qū)間
上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
.
(1)若
是函數(shù)
的極值點(diǎn),求
的值;
(2)求函數(shù)
的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
(1)證明 當(dāng)
,
時(shí),
;
(2)討論
在定義域內(nèi)的零點(diǎn)個(gè)數(shù),并證明你的結(jié)論.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com