【題目】已知函數(shù)
,x∈R.
(1)判斷函數(shù)的奇偶性,并說明理由;
(2)利用函數(shù)單調(diào)性定義證明:
在
上是增函數(shù);
(3)若
對任意的x∈R,任意的
恒成立,求實(shí)數(shù)k的取值范圍.
【答案】(1)
是偶函數(shù),證明詳見解析;(2)詳見解析;(3)
.
【解析】
(1)由奇偶性定義判斷證明;
(2)由單調(diào)性定義證明;
(3)設(shè)
,換元后求出
的最大值
,由(2)求出
有最小值
,然后解不等式
可得k的范圍.
(1)
是偶函數(shù).證明如下:
函數(shù)
的定義域?yàn)?/span>
,關(guān)于原點(diǎn)對稱,
∵
,
∴
是偶函數(shù).
(2)設(shè)
,則![]()
,
由
,知
,
,于是
,
∴
,
∴
,即
,
∴
在
上是增函數(shù).
(3
,則
![]()
![]()
,
令
,易知
,則
,
又∵
是R上的偶函數(shù),且在
上單調(diào)遞增,則該函數(shù)在區(qū)間
上單調(diào)遞減,∴
,
∴ 由題意只需4+k≤6,解得k≤2,即k的取值范圍為
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l過點(diǎn)P(1,2),根據(jù)下列條件分別求出直線l的方程(斜截式方程):
(1)直線l與
垂直;
(2)l在x軸、y軸上的截距之和等于0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體
中,
平面
,且
是邊長為2的等邊三角形,
.
![]()
(1)若
是線段
的中點(diǎn),證明:直線
面
;
(2)求二面角
的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】繳納個人所得稅是收入達(dá)到繳納標(biāo)準(zhǔn)的公民應(yīng)盡的義務(wù).
①個人所得稅率是個人所得稅額與應(yīng)納稅收入額之間的比例;
②應(yīng)納稅收入額=月度收入-起征點(diǎn)金額-專項扣除金額(三險一金等);
③2018年8月31日,第十三屆全國人民代表大會常務(wù)委員會第五次會議《關(guān)于修改中華人民共和國個人所得稅法的決定》,將個稅免征額(起征點(diǎn)金額)由3500元提高到5000元.下面兩張表格分別是2012年和2018年的個人所得稅稅率表:
2012年1月1日實(shí)行:
級數(shù) | 應(yīng)納稅收入額(含稅) | 稅率( | 速算扣除數(shù) |
一 | 不超過1500元的部分 | 3 | 0 |
二 | 超過1500元至4500元的部分 | 10 | 105 |
三 | 超過4500元至9000元的部分 | 20 | 555 |
四 | 超過9000元至35000元的部分 | 25 | 1005 |
五 | 超過35000元至55000元的部分 | 30 | 2755 |
六 | 超過55000元至80000元的部分 | 35 | 5505 |
七 | 超過80000元的部分 | 45 | 13505 |
2018年10月1日試行:
級數(shù) | 應(yīng)納稅收入額(含稅) | 稅率( | 速算扣除數(shù) |
一 | 不超過3000元的部分 | 3 | 0 |
二 | 超過3000元至12000元的部分 | 10 | 210 |
三 | 超過12000元至25000元的部分 | 20 | 1410 |
四 | 超過25000元至35000元的部分 | 25 | 2660 |
五 | 超過35000元至55000元的部分 | 30 | 4410 |
六 | 超過55000元至80000元的部分 | 35 | 7160 |
七 | 超過80000元的部分 | 45 | 15160 |
(1)何老師每月工資收入均為13404元,專項扣除金額3710元,請問何老師10月份應(yīng)繳納多少元個人所得稅?若與9月份相比,何老師增加收入多少元?>
(2)對于財務(wù)人員來說,他們計算個人所得稅的方法如下:應(yīng)納個人所得稅稅額=應(yīng)納稅收入額×適用稅率-速算扣除數(shù),請解釋這種計算方法的依據(jù)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若
在
處的切線平行于
軸,求
的值和
的極值;
(2)若過點(diǎn)
可作曲線
的三條切線,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若
在
處的切線方程為
,求
的值;
(2)若
為區(qū)間
上的任意實(shí)數(shù),且對任意
,總有
成立,求實(shí)數(shù)
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)若直角三角形兩直角邊長之和為12,求其周長
的最小值;
(2)若三角形有一個內(nèi)角為
,周長為定值
,求面積
的最大值;
(3)為了研究邊長
滿足
的三角形其面積是否存在最大值,現(xiàn)有解法如下:
(其中
, 三角形面積的海倫公式),
∴![]()
![]()
,
而
,
,
,則
,
但是,其中等號成立的條件是
,于是
與
矛盾,
所以,此三角形的面積不存在最大值.
以上解答是否正確?若不正確,請你給出正確的答案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)
在以
為焦點(diǎn)的雙曲線
上,過
作
軸的垂線,垂足為
,若四邊形
為菱形,則該雙曲線的離心率為( )
![]()
A.
B. 2 C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法:①對于獨(dú)立性檢驗(yàn),
的值越大,說明兩事件相關(guān)程度越大,②以模型
去擬合一組數(shù)據(jù)時,為了求出回歸方程,設(shè)
,將其變換后得到線性方程
,則
的值分別是
和
,③某中學(xué)有高一學(xué)生400人,高二學(xué)生300人,高三學(xué)生200人,學(xué)校團(tuán)委欲用分層抽樣的方法抽取18名學(xué)生進(jìn)行問卷調(diào)查,則高一學(xué)生被抽到的概率最大,④通過回歸直線
=
+
及回歸系數(shù)
,可以精確反映變量的取值和變化趨勢,其中正確的個數(shù)是
A.
B.
C.
D. ![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com