(本小題滿分12分)
設(shè)f(x)是定義在[-1,1]上的奇函數(shù),對(duì)于任意的![]()
當(dāng)
時(shí),都
有![]()
(1)若函數(shù)g(x)=f(x-c)和h(x)=f(x-c2)的定義域的交集是空集,求c的取值范圍;
(2)判斷函數(shù)f(x)在[-1,1]上的單調(diào)性,并用定義證明。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)已知△ABC是邊長(zhǎng)為2的正三角形,如圖,P,Q依次是AB,AC邊上的點(diǎn),且線段PQ將△ABC分成面積相等的兩部分,設(shè)AP=x,AQ=t,PQ=y,求:![]()
(1)t關(guān)于x的函數(shù)關(guān)系式;
(2)y關(guān)于x的函數(shù)關(guān)系式;
(3)y的最小值和最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)
設(shè)函數(shù)
的定義域?yàn)?i>R,當(dāng)x<0時(shí),
>1,且對(duì)任意的實(shí)數(shù)x,y∈R,有
.
(1)求
,判斷并證明函數(shù)
的單調(diào)性;
(2)數(shù)列
滿足
,且
,
①求
通項(xiàng)公式;
②當(dāng)
時(shí),不等式
對(duì)不小于2的正整數(shù)
恒成立,求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
對(duì)任意
,都有
,
且
> 0時(shí),
< 0,
.
(1)求
;
(2)求證:
是奇函數(shù);
(3)請(qǐng)寫出一個(gè)符合條件的函數(shù);
(4)證明
在R上是減函數(shù),并求當(dāng)
時(shí),
的最大值和最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)已知函數(shù)
,(x>0).
(1)當(dāng)0<a<b,且f(a)=f(b)時(shí),求
的值 ;
(2)是否存在實(shí)數(shù)a,b(a<b),使得函數(shù)y=f(x)的定義域、值域都是[a,b],若存在,求出a,b的值,若不存在,請(qǐng)說(shuō)明理由.
(3)
若存在實(shí)數(shù)a,b(a<b),使得函數(shù)y=f(x)的定義域?yàn)?[a,b]時(shí),值域?yàn)?[
ma,mb],(m≠0),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某小區(qū)要建一座八邊形的休閑小區(qū),它的主體造型的平面圖是由二個(gè)相同的矩形![]()
![]()
和
構(gòu)成的面積為![]()
的十字型地域,計(jì)劃在正方形
上建一座“觀景花壇”,
造價(jià)為
元/
,在四個(gè)相同的矩形上(圖中陰影部分)鋪花崗巖地坪,造價(jià)為
元/
,再在四個(gè)空角(如
等)上鋪草坪,造價(jià)為
元/
.
(1)設(shè)總造價(jià)為
元,
長(zhǎng)為![]()
,試建立
與
的函數(shù)關(guān)系;
(2)當(dāng)
為何值時(shí),
最?并求這個(gè)最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
已知二次函數(shù)
的導(dǎo)函數(shù)為
,且
>0,
的圖象與x
軸恰有一個(gè)交點(diǎn),則
的最小值為 ( )
| A.3 | B. | C.2 | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
為偶函數(shù),且其圖像上相鄰的一個(gè)最高點(diǎn)和最低點(diǎn)之間的距離為
。
(1)求函數(shù)f(x)的解析式;
(2)若
的值。
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com