【題目】在平面直角坐標(biāo)系中,圓
與
軸的正半軸交于點(diǎn)
,以
為圓心的圓![]()
與圓
交于
兩點(diǎn).
![]()
(1)若直線
與圓
切于第一象限,且與坐標(biāo)軸交于
,當(dāng)線段
長(zhǎng)最小時(shí),求直線
的方程;
(2)設(shè)
是圓
上異于
的任意一點(diǎn),直線
分別與
軸交于點(diǎn)
和
,問(wèn)
是否為定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說(shuō)明理由.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
經(jīng)過(guò)點(diǎn)
,且離心率為
.
(1)求橢圓
的方程;
(2)設(shè)點(diǎn)
在
軸上的射影為點(diǎn)
,過(guò)點(diǎn)
的直線
與橢圓
相交于
,
兩點(diǎn),且
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的離心率為
,且過(guò)點(diǎn)
.
![]()
(1)求橢圓
的方程;
(2)過(guò)點(diǎn)
且斜率大于0的直線
與橢圓
相交于點(diǎn)
,
,直線
,
與
軸相交于
,
兩點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列
,﹣
,
,﹣
,…的一個(gè)通項(xiàng)公式為( )
A.an=(﹣1)n ![]()
B.an=(﹣1)n ![]()
C.an=(﹣1)n+1 ![]()
D.an=(﹣1)n+1 ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲乙兩個(gè)班級(jí)均為40人,進(jìn)行一門(mén)考試后,按學(xué)生考試成績(jī)及 格與不及格進(jìn)行統(tǒng)計(jì),甲班及格人數(shù)為36人,乙班及格人數(shù)為24人.
(1) 根據(jù)以上數(shù)據(jù)建立一個(gè)
的列聯(lián)表;
(2) 試判斷成績(jī)與班級(jí)是否有關(guān)?
參考公式:
,其中![]()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且滿足
acosC﹣csinA=0.
(1)求角C的大小;
(2)已知b=4,△ABC的面積為6
,求邊長(zhǎng)c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列{an}滿足a1=1,an+1
=1,記Sn=a12+a22+…+an2 , 若S2n+1﹣Sn≤
對(duì)任意n∈N*恒成立,則正整數(shù)m的最小值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+ax+6.
(1)當(dāng)a=5時(shí),解不等式f(x)<0;
(2)若不等式f(x)>0的解集為R,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|x≤﹣1或x≥5},集合B={x|2a≤x≤a+2}.
(1)若a=﹣1,求A∩B和A∪B;
(2)若A∩B=B,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com