已知
.
(1)求
的極值,并證明:若
有
;
(2)設(shè)
,且
,
,證明:
,
若
,由上述結(jié)論猜想一個(gè)一般性結(jié)論(不需要證明);
(3)證明:若
,則
.
(1)詳見(jiàn)解析;(2) 詳見(jiàn)解析;(3) 詳見(jiàn)解析.
解析試題分析:(1)利用求導(dǎo)探求函數(shù)的單調(diào)性,進(jìn)而確定其極值;借助結(jié)論
時(shí)
恒成立,證明
;(2)借助第一問(wèn)的結(jié)論,通過(guò)拼湊技巧進(jìn)行構(gòu)造要證明的不等式
;(3)借助第二問(wèn)的猜想結(jié)論,進(jìn)行構(gòu)造,利用對(duì)數(shù)運(yùn)算進(jìn)行化簡(jiǎn)整理即可得到證明的結(jié)論.
試題解析:(1)
則![]()
當(dāng)x∈(0,1)時(shí)
,x∈(1,+∞)時(shí)
,
∴
在(0,1)遞增,在(1,+∞)遞減,
2分
∴當(dāng)
時(shí)
恒成立,即
時(shí)
恒成立。
∴
4分
證明:
,
(2)證明:設(shè)
,且
,令
,則
,且
,
,
由(1)可知
①
②
①
+②
,得![]()
∴
8分
猜想:若
,且
時(shí)有
9分
(3)證明:令![]()
![]()
由猜想結(jié)論得![]()
![]()
=![]()
∴
,
即有
。 14分
考點(diǎn):(1)函數(shù)的極值;(2)不等式的證明.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)
為實(shí)數(shù),函數(shù)![]()
(Ⅰ)求
的單調(diào)區(qū)間與極值;
(Ⅱ)求證:當(dāng)
且
時(shí),![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
為函數(shù)
圖象上一點(diǎn),O為坐標(biāo)原點(diǎn),記直線
的斜率
.
(1)若函數(shù)
在區(qū)間![]()
上存在極值,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)
時(shí),不等式
恒成立,求實(shí)數(shù)
的取值范圍;
(3)求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
的導(dǎo)函數(shù)
,且
,設(shè)
,
且
.
(Ⅰ)討論
在區(qū)間
上的單調(diào)性;
(Ⅱ)求證:
;
(Ⅲ)求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如下圖,過(guò)曲線
:
上一點(diǎn)
作曲線
的切線
交
軸于點(diǎn)
,又過(guò)
作
軸的垂線交曲線
于點(diǎn)
,然后再過(guò)
作曲線
的切線
交
軸于點(diǎn)
,又過(guò)
作
軸的垂線交曲線
于點(diǎn)
,
,以此類推,過(guò)點(diǎn)
的切線
與
軸相交于點(diǎn)
,再過(guò)點(diǎn)
作
軸的垂線交曲線
于點(diǎn)
(
N
).
(1) 求
、
及數(shù)列
的通項(xiàng)公式;(2) 設(shè)曲線
與切線
及直線
所圍成的圖形面積為
,求
的表達(dá)式; (3) 在滿足(2)的條件下, 若數(shù)列
的前
項(xiàng)和為
,求證:![]()
N
.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
.
(Ⅰ)若
時(shí),
,求
的最小值;
(Ⅱ)設(shè)數(shù)列
的通項(xiàng)
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知![]()
(Ⅰ)如果函數(shù)
的單調(diào)遞減區(qū)間為
,求函數(shù)
的解析式;
(Ⅱ)對(duì)一切的
,![]()
恒成立,求實(shí)數(shù)
的取值范圍
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com