某公司為確定下一年度 投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳 費(fèi)x(單位:千元)對年銷量y(單位:t)和年利潤z(單位:千元)的影. 對近8年的年宣傳費(fèi)xi和年銷售量
yi(i =1,2,···,8)數(shù)據(jù)作了初步處理得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
![]()
![]()
(Ⅰ)根據(jù)散點(diǎn)圖判斷,y=a+bx與y=c+d
哪一個(gè)適宜作為年銷售量y關(guān)于年宣傳費(fèi)
x的回歸方程類型?(給出判斷即可,不必說明理由)
(Ⅱ)根據(jù)(Ⅰ)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(Ⅲ)已知這種產(chǎn)品的年利潤z與x、y的關(guān)系為z=0.2y-x. 根據(jù)(Ⅱ)的結(jié)果回答下列問題:
(i)年宣傳費(fèi)x=49時(shí),年銷售量及年利潤的預(yù)報(bào)值是多少?
(ii)年宣傳費(fèi)x為何值時(shí),年利潤的預(yù)報(bào)值最大?
附:對于一組數(shù)據(jù)
,
,… ,
, 其回歸直線
的斜率和截距的最小二乘估計(jì)分別為:
,
.
解:(Ⅰ)由散點(diǎn)圖可以判斷,
適宜作為年銷售量
關(guān)于年宣傳費(fèi)
的回歸方程類型. ………………………………………………2分
(Ⅱ)令
,先建立
關(guān)于
的線性回歸方程.
由于
,
,
所以
關(guān)于
的線性回歸方程為
,
因此
關(guān)于
的線性回歸方程為
. ………………………6分
(Ⅲ)(i)由(Ⅱ)知,當(dāng)
時(shí),
年銷量
的預(yù)報(bào)值
,
年利潤
的預(yù)報(bào)值
. ………………………8分
(ii)根據(jù)(Ⅱ)的結(jié)果知,年利潤
的預(yù)報(bào)值
.
所以當(dāng)
,即
時(shí),
取得最大值.
故年宣傳費(fèi)為46.24千元時(shí),年利潤的預(yù)報(bào)值最大. ………………………10分
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)等差數(shù)列
的前
項(xiàng)和為
,且
,
.
(1)求數(shù)列
的通項(xiàng)公式;
(2)設(shè)數(shù)列
的前
項(xiàng)和為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)
定義在R上的奇函數(shù),當(dāng)
時(shí),
,給出下列命題:
①當(dāng)
時(shí),
②函數(shù)
有2個(gè)零點(diǎn)
③
的解集為
④
,都有![]()
其中正確命題個(gè)數(shù)是
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知隨機(jī)變量
服從正態(tài)分布
, 若
, 則
( )
A.0.477 B. 0. 628 C. 0.954 D. 0.977
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在5張獎(jiǎng)券中有3張無獎(jiǎng),2張有獎(jiǎng). 如果從中任取2張,已知其中一張無獎(jiǎng),則另一張有獎(jiǎng)的概率是 .
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com