| A. | [0,1] | B. | [-$\frac{\sqrt{3}}{3}$,0] | C. | [-1,1] | D. | [-1,0] |
分析 畫出圖形,不難發(fā)現(xiàn)直線恒過定點(-2,0),結合概率范圍可知直線與圓的關系,直線以(-2,0)點為中心順時針旋轉至與x軸重合,從而確定直線的斜率范圍.
解答
解:畫出圖形,不難發(fā)現(xiàn)直線恒過定點(-2,0),
平面區(qū)域M={(x,y)|x2+y2≤4},是圓及其內部,直線過(-2,0),(0,2)時,
它們圍成的平面區(qū)域為M,向區(qū)域Ω上隨機投一點A,
m=-1時,N={(x,y)|$\left\{\begin{array}{l}{y≥mx+2m}\\{{x}^{2}+{y}^{2}≤4}\end{array}\right.$}的面積為3π+2,點A落在區(qū)域M內的概率為P(N),此時P(M)=$\frac{3π+2}{4π}$,
當直線與x軸重合時,P(N)=$\frac{1}{2}$;
直線的斜率范圍是[-$\frac{\sqrt{3}}{3}$,0].
故選:B.
點評 本題考查直線與圓的方程的應用,幾何概型,直線系,數(shù)形結合的數(shù)學思想,是好題,難度較大.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | a<b<c | B. | a<c<b | C. | b<c<a | D. | b<a<c |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{10\sqrt{6}}{3}$ | B. | $\frac{14\sqrt{6}}{3}$ | C. | 4$\sqrt{3}$ | D. | 6$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com