【題目】已知函數(shù)f(x)=ax﹣lnx;g(x)=
.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)求證:若a=e(e是自然常數(shù)),當(dāng)x∈[1,e]時,f(x)≥e﹣g(x)恒成立;
(3)若h(x)=x2[1+g(x)],當(dāng)a>1時,對于x1∈[1,e],x0∈[1,e],使f(x1)=h(x0),求a的取值范圍.
【答案】
(1)解:∵f(x)=ax﹣lnx,∴x>0,
,
∵x>0,
∴當(dāng)a≤0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),
當(dāng)a>0時,若x>
,則f′(x)>0,∴f(x)在(
,+∞)上是增函數(shù),
若0<x<
,則f′(x)<0,∴f(x)在(0,
)上是減函數(shù).
綜上所述,當(dāng)a≤0時,f(x)在(0,+∞)上是減函數(shù),
當(dāng)a>0時,f(x)在(
,+∞)上是增函數(shù),在(0,
)上是減函數(shù).
(2)證明:當(dāng)a=e時,f(x)=ex﹣lnx,
∴
,∴x∈[1,e]時,f′(x)>0恒成立.
f(x)=ex﹣lnx在[1,e]上是單調(diào)遞增函數(shù),∴f(x)min=f(1)=e,
令H(x)=e﹣g(x)=e﹣
,則H′(x)=
,x∈[1,e]時,H′(x)≤0,
∴H(x)在[1,e]上單調(diào)遞減,H(x)max=H(1)=e,
∴f(x)≥H(x),即f(x)≥e﹣g(x).
故a=e(e是自然常數(shù)),當(dāng)x∈[1,e]時,f(x)≥e﹣g(x)恒成立.
(3)解:∵
,a>1時,由x∈[1,e],得f′(x)>0,
∴f(x)=ax﹣lnx在[1,e]上單調(diào)遞增,
f(x)min=f(1)=a,f(x)max=f(e)=ae﹣1,即f(x)的值域是[a,ae﹣1],
由h(x)=x2+1﹣lnx,得
,∴x∈[1,e]時,h′(x)>0,
h(x)在[1,e]上單調(diào)遞增,
∴h(x)min=h(1)=2,h(x)max=h(e)=e2,即h(x)的值域是[2,e2],
x1∈[1,e],x0∈[1,e],有f(x1)=h(x0),
∴f(x)的值域是h(x)的值域的子集,
∴
,∴
.
∴a的取值范圍是[2,e+
].
【解析】(1)推導(dǎo)出
,由此利用導(dǎo)數(shù)性質(zhì)能討論函數(shù)f(x)的單調(diào)性.(2)當(dāng)a=e時,f(x)=ex﹣lnx,
,由此利用構(gòu)造法和導(dǎo)數(shù)性質(zhì)能證明a=e(e是自然常數(shù)),當(dāng)x∈[1,e]時,f(x)≥e﹣g(x)恒成立.(3)由
,a>1時,求出f(x)的值域是[a,ae﹣1],由此利用導(dǎo)數(shù)性質(zhì)能求出a的取值范圍.
【考點精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識點,需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間
內(nèi),(1)如果
,那么函數(shù)
在這個區(qū)間單調(diào)遞增;(2)如果
,那么函數(shù)
在這個區(qū)間單調(diào)遞減;求函數(shù)
在
上的最大值與最小值的步驟:(1)求函數(shù)
在
內(nèi)的極值;(2)將函數(shù)
的各極值與端點處的函數(shù)值
,
比較,其中最大的是一個最大值,最小的是最小值才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,
平面
,
,
,
,
,
,
.
(I)求異面直線
與
所成角的余弦值;
(II)求證:
平面
;
(Ⅲ)求直線
與平面
所成角的正弦值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某幾何體的俯視圖是如圖所示的矩形,正視圖是一個底邊長為8、高為4的等腰三角形,側(cè)視圖是一個底邊長為6、高為4的等腰三角形.
![]()
(1)求該幾何體的體積
;
(2)求該幾何體的表面積
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新學(xué)年伊始,某中學(xué)學(xué)生社團(tuán)開始招新,某高一新生對“海濟(jì)公益社”、“理科學(xué)社”、“高音低調(diào)樂社”很感興趣,假設(shè)她能被這三個社團(tuán)接受的概率分別為
,
,
.
(1)求此新生被兩個社團(tuán)接受的概率;
(2)設(shè)此新生最終參加的社團(tuán)數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為確定下一年投入某種產(chǎn)品的宣傳費,需了解年宣傳費x(單位:千元)對年利潤y(單位:萬元)的影響,對近5年的宣傳費xi和年利潤yi(i=1,2,3,4,5)進(jìn)行了統(tǒng)計,列出了下表:
x(單位:千元) | 2 | 4 | 7 | 17 | 30 |
y(單位:萬元) | 1 | 2 | 3 | 4 | 5 |
員工小王和小李分別提供了不同的方案.
(1)小王準(zhǔn)備用線性回歸模型擬合y與x的關(guān)系,請你建立y關(guān)于x的線性回歸方程(系數(shù)精確到0.01);
(2)小李決定選擇對數(shù)回歸模擬擬合y與x的關(guān)系,得到了回歸方程:
=1.450lnx+0.024,并提供了相關(guān)指數(shù)R2=0.995,請用相關(guān)指數(shù)說明選擇哪個模型更合適,并預(yù)測年宣傳費為4萬元的年利潤(精確到0.01)(小王也提供了他的分析數(shù)據(jù)
(yi﹣
i)2=1.15) 參考公式:相關(guān)指數(shù)R2=1﹣
回歸方程
=
x+
中斜率和截距的最小二乘法估計公式分別為
=
,
=
﹣
x,參考數(shù)據(jù):ln40=3.688,
=538.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=lnx,g(x)=ax+
,函數(shù)f(x)的圖象與x軸的交點也在函數(shù)g(x)的圖象上,且在此點有公切線. (Ⅰ)求a、b的值;
(Ⅱ)試比較f(x)與g(x)的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
是常數(shù).
(1)當(dāng)
時,求函數(shù)
的值域;
(2)當(dāng)
時,求方程
的解集;
(3)若函數(shù)
在區(qū)間
上有零點,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖都是邊長為1的正方體疊成的幾何體,例如第(1)個幾何體的表面積為6個平方單位,第(2)個幾何體的表面積為18個平方單位,第(3)個幾何體的表面積是36個平方單位.依此規(guī)律,則第n個幾何體的表面積是個平方單位. ![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com