【題目】自地面垂直向上發(fā)射火箭,火箭的質(zhì)量為m,試計(jì)算將火箭發(fā)射到距地面的高度為h時所做的功.
【答案】解:地球吸引物體的力為f(r)=mg
,其中m表示物體的質(zhì)量,
R表示地球的半徑,r表示地球中心到物體的距離.
將[R,R+h]分成n等份,
得△ri=
,ri=R+i
.
故f(ri)=mg
.
故物體用以克服地球引力所做的功為
W=
f(ri)△ri=
mg
![]()
=mg2
△ri=mg2
dr=mg2(
﹣
).
【解析】根據(jù)地球吸引物體的力為f(r)=mg
,以及定積分的應(yīng)用即可求出.
【考點(diǎn)精析】通過靈活運(yùn)用定積分的概念,掌握定積分的值是一個常數(shù),可正、可負(fù)、可為零;用定義求定積分的四個基本步驟:①分割;②近似代替;③求和;④取極限即可以解答此題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(2x+
)﹣cos2x.
(1)求f(x)的最小正周期及x∈[
,
]時f(x)的值域;
(2)在△ABC中,角A、B、C所對的邊為a,b,c,且角C為銳角,S△ABC=
,c=2,f(C+
)=
﹣
.求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax﹣lnx;g(x)=
.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)求證:若a=e(e是自然常數(shù)),當(dāng)x∈[1,e]時,f(x)≥e﹣g(x)恒成立;
(3)若h(x)=x2[1+g(x)],當(dāng)a>1時,對于x1∈[1,e],x0∈[1,e],使f(x1)=h(x0),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在
上的函數(shù)
,如果滿足:對任意
,存在常數(shù)
,都有
成立,則稱
是
上的有界函數(shù),其中
稱為函數(shù)
的上界,已知函數(shù)
.
(Ⅰ)若
是奇函數(shù),求
的值.
(Ⅱ)當(dāng)
時,求函數(shù)
在
上的值域,判斷函數(shù)
在
上是否為有界函數(shù),并說明理由.
(Ⅲ)若函數(shù)
在
上是以
為上界的函數(shù),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大衍數(shù)列,來源于中國古代著作《乾坤譜》中對易傳“大衍之?dāng)?shù)五十”的推論.其前10項(xiàng)為:0、2、4、8、12、18、24、32、40、50.通項(xiàng)公式:
,如果把這個數(shù)列{an}排成如圖形狀,并記A(m,n)表示第m行中從左向右第n個數(shù),則A(10,4)的值為( ) ![]()
A.1200
B.1280
C.3528
D.3612
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)當(dāng)
時,求函數(shù)f(x)的值域;
(2)若
恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x﹣1)ex﹣kx2+2,k∈R. (Ⅰ) 當(dāng)k=0時,求f(x)的極值;
(Ⅱ) 若對于任意的x∈[0,+∞),f(x)≥1恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3+ax2+bx+c,x∈[﹣2,2]表示的曲線過原點(diǎn),且在x=±1處的切線斜率均為﹣1,給出以下結(jié)論: ①f(x)的解析式為f(x)=x3﹣4x,x∈[﹣2,2];
②f(x)的極值點(diǎn)有且僅有一個;
③f(x)的最大值與最小值之和等于0.
其中正確的結(jié)論有( )
A.0個
B.1個
C.2個
D.3個
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com