【題目】有編號為
的10個零件,測量其直徑(單位:cm),得到下面數(shù)據(jù):
編號 |
|
|
|
|
|
|
|
|
|
|
直徑 | 1.51 | 1.49 | 1.49 | 1.51 | 1.49 | 1.51 | 1.47 | 1.46 | 1.53 | 1.47 |
其中直徑在區(qū)間
內(nèi)的零件為一等品.
(1)上述10個零件中,隨機(jī)抽取1個,求這個零件為一等品的概率.
(2)從一等品零件中,隨機(jī)抽取2個;
①用零件的編號列出所有可能的抽取結(jié)果;
②求這2個零件直徑相等的概率.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
(
為自然對數(shù)的底)。
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若存在均屬于區(qū)間
的
,
,且
,使
,證明:
;
(Ⅲ)對于函數(shù)
與
定義域內(nèi)的任意實數(shù)
,若存在常數(shù)
,
,使得
和
都成立,則稱直線
為函數(shù)
與
的分界線。試探究當(dāng)
時,函數(shù)
與
是否存在“分界線”?若存在,請給予證明,并求出
,
的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
在直角坐標(biāo)系
中,點(diǎn)P到兩點(diǎn)
,
的距離之和等于4,設(shè)點(diǎn)P的軌跡為
,直線
與C交于A,B兩點(diǎn).
(Ⅰ)寫出C的方程;
(Ⅱ)若![]()
![]()
,求k的值;
(Ⅲ)若點(diǎn)A在第一象限,證明:當(dāng)k>0時,恒有|
|>|
|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱
中,
、
分別是
、
的中點(diǎn).
![]()
(Ⅰ)證明:
平面
;
(Ⅱ)若這個三棱柱的底面是等邊三角形,側(cè)面都是正方形,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
,其中
.
(1)當(dāng)
時,求函數(shù)
的極值;
(2)若函數(shù)
在區(qū)間
上有兩個零點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△
中,
,
分別為
,
的中點(diǎn),
為
的中點(diǎn),
,
.將△
沿
折起到△
的位置,使得平面
平面
,
為
的中點(diǎn),如圖2.
(Ⅰ)求證:
平面
;
(Ⅱ)求F到平面A1OB的距離.
![]()
圖1 圖2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用長為18 cm的鋼條圍成一個長方體形狀的框架,要求長方體的長與寬之比為2:1,問該長方體的長、寬、高各為多少時,其體積最大?最大體積是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)如圖,
是圓
的直徑,點(diǎn)
是圓
上異于
的點(diǎn),
垂直于圓
所在的平面,且
.
![]()
(Ⅰ)若
為線段
的中點(diǎn),求證
平面
;
(Ⅱ)求三棱錐
體積的最大值;
(Ⅲ)若
,點(diǎn)
在線段
上,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直四棱柱
中,底面
是邊長為2的正方形,
分別為線段
,
的中點(diǎn).
![]()
(1)求證:
||平面
;
(2)四棱柱
的外接球的表面積為
,求異面直線
與
所成的角的大小.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com