分析 連結(jié)AM,AN,并延長分別交BC,CD于F,E,EF為BD的中位線,再根據(jù)重心的性質(zhì)可知,MN∥EF,即可證明結(jié)論.
解答
解:連結(jié)AM,AN,并延長分別交BC,CD于F,E,則F,E分別是BC,CD的中點(diǎn),連結(jié)EF,則EF為BD的中位線,
所以EF平行且等于$\frac{1}{2}$BD,
因?yàn)镸、N分別是△ABC和△ACD的重心,
所以$\frac{AM}{AF}=\frac{AN}{AE}$=$\frac{2}{3}$,
所以MN∥EF,
所以MN∥BD.
點(diǎn)評(píng) 本題主要考查重心和中位線的性質(zhì),考查學(xué)生的運(yùn)算能力,要求熟練掌握中位線和重心的比例性質(zhì).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (-$\sqrt{2}$,0) | B. | (-$\sqrt{2}$,$\sqrt{2}$) | C. | (-$\sqrt{2}$,-1) | D. | (-$\sqrt{2}$,-1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 8π | B. | 12π | C. | 16π | D. | 20π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 相交并且過圓心 | B. | 相交不過圓心 | C. | 相切 | D. | 相離 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com