【題目】如圖,已知正三棱柱ABC=A1B1C1的各棱長都是4,E是BC的中點(diǎn),動(dòng)點(diǎn)F在側(cè)棱CC1上,且不與點(diǎn)C重合.
(1)當(dāng)CF=1時(shí),求證:EF⊥A1C;
(2)設(shè)二面角C﹣AF﹣E的大小為θ,求tanθ的最小值.
![]()
【答案】(1)見解析 (2)![]()
【解析】
(1)過E作EN⊥AC于N,連接EF,NF,AC1,由直棱柱的性質(zhì)可知,底面ABC⊥側(cè)面A1C
∴EN⊥側(cè)面A1C
NF為EF在側(cè)面A1C內(nèi)的射影
在直角三角形CNF中,CN=1
則由
,得NF∥AC1,又AC1⊥A1C,故NF⊥A1C
由三垂線定理可知EF⊥A1C
(2)連接AF,過N作NM⊥AF與M,連接ME
由(1)可知EN⊥側(cè)面A1C,根據(jù)三垂線定理得EM⊥AF
∴∠EMN是二面角C﹣AF﹣E的平面角即∠EMN=θ
設(shè)∠FAC=α則0°<α≤45°,
在直角三角形CNE中,NE=
,在直角三角形AMN中,MN=3sinα
故tanθ=
,又0°<α≤45°∴0<sinα≤![]()
故當(dāng)α=45°時(shí),tanθ達(dá)到最小值,
tanθ=
,此時(shí)F與C1重合
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),
軸為極軸建立極坐標(biāo)系,曲線
的方程為
(
為參數(shù)),曲線
的極坐標(biāo)方程為
,若曲線
與
相交于
、
兩點(diǎn).
(1)求
的值;
(2)求點(diǎn)
到
、
兩點(diǎn)的距離之積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在抽取彩票“雙色球”中獎(jiǎng)號(hào)碼時(shí),有33個(gè)紅色球,每個(gè)球的編號(hào)分別為01,02,…,33.一位彩民用隨機(jī)數(shù)表法選取6個(gè)號(hào)碼作為6個(gè)紅色球的編號(hào),選取方法是從下面的隨機(jī)數(shù)表中第1行第6列的數(shù)字3開始,從左向右讀數(shù),則依次選出的第3個(gè)紅色球的編號(hào)為( )
49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 |
57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 |
A.21B.32C.09D.20
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在
軸上,離心率為
,橢圓
上的點(diǎn)到焦點(diǎn)距離的最大值為
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)斜率為
的直線
與橢圓
交于不同的兩點(diǎn)
,且線段
的中垂線交
軸于點(diǎn)
,求點(diǎn)
橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù)
.
(1)當(dāng)
時(shí),求不等式
的解集;
(2)若不等式
的解集為空集,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為迎接2022年北京冬季奧運(yùn)會(huì),普及冬奧知識(shí),某校開展了“冰雪答題王”冬奧知識(shí)競賽活動(dòng).現(xiàn)從參加冬奧知識(shí)競賽活動(dòng)的學(xué)生中隨機(jī)抽取了100名學(xué)生,將他們的比賽成績(滿分為100分)分為6組:
,
,
,
,
,
,得到如圖所示的頻率分布直方圖.
![]()
(1)求
的值;
(2)估計(jì)這100名學(xué)生的平均成績(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表);
(3)在抽取的100名學(xué)生中,規(guī)定:比賽成績不低于80分為“優(yōu)秀”,比賽成績低于80分為“非優(yōu)秀”.請將下面的2×2列聯(lián)表補(bǔ)充完整,并判斷是否有99.9%的把握認(rèn)為“比賽成績是否優(yōu)秀與性別有關(guān)”?
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
男生 | 40 | ||
女生 | 50 | ||
合計(jì) | 100 |
參考公式及數(shù)據(jù):![]()
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】今年入冬以來,我市天氣反復(fù).在下圖中統(tǒng)計(jì)了我市上個(gè)月前15天的氣溫,以及相對(duì)去年同期的氣溫差(今年氣溫-去年氣溫,單位:攝氏度),以下判斷錯(cuò)誤的是( )
![]()
A.今年每天氣溫都比去年氣溫低B.今年的氣溫的平均值比去年低
C.今年8-12號(hào)氣溫持續(xù)上升D.今年8號(hào)氣溫最低
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面直角坐標(biāo)系
,直線
過點(diǎn)
,且傾斜角為
,以
為極點(diǎn),
軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓
的極坐標(biāo)方程為
.
(1)求直線
的參數(shù)方程和圓
的標(biāo)準(zhǔn)方程;
(2)設(shè)直線
與圓
交于
、
兩點(diǎn),若
,求直線
的傾斜角的
值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com