【題目】已知平面直角坐標(biāo)系
,直線
過點(diǎn)
,且傾斜角為
,以
為極點(diǎn),
軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓
的極坐標(biāo)方程為
.
(1)求直線
的參數(shù)方程和圓
的標(biāo)準(zhǔn)方程;
(2)設(shè)直線
與圓
交于
、
兩點(diǎn),若
,求直線
的傾斜角的
值.
【答案】(1)直線
的參數(shù)方程為
(
為參數(shù)),圓
的標(biāo)準(zhǔn)方程為:
.(2)
或
.
【解析】
(1)根據(jù)直線參數(shù)方程的幾何意義得出參數(shù)方程,根據(jù)極坐標(biāo)與直角坐標(biāo)的關(guān)系化簡得出圓的標(biāo)準(zhǔn)方程;(2)把直線l的參數(shù)方程代入圓的標(biāo)準(zhǔn)方程,根據(jù)參數(shù)的幾何意義及根與系數(shù)的關(guān)系得出α.
(1)因為直線
過點(diǎn)
,且傾斜角為
,
所以直線
的參數(shù)方程為
(
為參數(shù)),
因為圓
的極坐標(biāo)方程為
,
所以
,
所以圓
的普通方程為:
,
圓
的標(biāo)準(zhǔn)方程為:
.
(2)直線
的參數(shù)方程為
,代入圓
的標(biāo)準(zhǔn)方程得
,
整理得
,
設(shè)
、
兩點(diǎn)對應(yīng)的參數(shù)分別為
、
,則
恒成立,
,
=-4<0
所以
,
.
因為
,所以
或
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正三棱柱ABC=A1B1C1的各棱長都是4,E是BC的中點(diǎn),動點(diǎn)F在側(cè)棱CC1上,且不與點(diǎn)C重合.
(1)當(dāng)CF=1時,求證:EF⊥A1C;
(2)設(shè)二面角C﹣AF﹣E的大小為θ,求tanθ的最小值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系
中,直線
過原點(diǎn)且傾斜角為
.以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸正半軸為極軸建立坐標(biāo)系,曲線
的極坐標(biāo)方程為
.在平面直角坐標(biāo)系
中,曲線
與曲線
關(guān)于直線
對稱.
(Ⅰ)求曲線
的極坐標(biāo)方程;
(Ⅱ)若直線
過原點(diǎn)且傾斜角為
,設(shè)直線
與曲線
相交于
,
兩點(diǎn),直線
與曲線
相交于
,
兩點(diǎn),當(dāng)
變化時,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在圓柱
中,點(diǎn)
、
分別為上、下底面的圓心,平面
是軸截面,點(diǎn)
在上底面圓周上(異于
、
),點(diǎn)
為下底面圓弧
的中點(diǎn),點(diǎn)
與點(diǎn)
在平面
的同側(cè),圓柱
的底面半徑為1,高為2.
![]()
(1)若平面
平面
,證明:
;
(2)若直線
平面
,求
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
:
,動點(diǎn)
,線段
與圓
相交于點(diǎn)
,線段
的長度與點(diǎn)
到
軸的距離相等.
(1)求動點(diǎn)
的軌跡
的方程;
(2)過點(diǎn)
的直線
交曲線
于
,
兩點(diǎn),交圓
于
,
兩點(diǎn),其中
在線段
上,
在線段
上,求
的最小值及此時直線
的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,直線
的參數(shù)方程為
(其中
為參數(shù)).以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,并取相同的單位長度,曲線
的極坐標(biāo)方程為
.
(1)求直線
的普通方程和曲線
的直角坐標(biāo)方程;
(2)過點(diǎn)
作直線
的垂線交曲線
于
兩點(diǎn),求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直三棱柱
中,
,
,
,
,
分別是
,
,
的中點(diǎn),點(diǎn)
在直線
上運(yùn)動,且
.
![]()
(1)證明:無論
取何值,總有
平面
;
(2)是否存在點(diǎn)
,使得平面
與平面
的夾角為
?若存在,試確定點(diǎn)
的位置,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點(diǎn)
,滿足|PA|=2|PB|的點(diǎn)
的軌跡是圓M:x2+y2
x+Ey+F=0.直線AB與圓M相交于C,D兩點(diǎn),
,且點(diǎn)C的縱坐標(biāo)為
.
(1)求a,b的值;
(2)已知直線l:x+y+2=0與圓M相交于G,H兩點(diǎn),求|GH|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國剪紙是一種用剪刀或刻刀在紙上剪刻花紋,用于裝點(diǎn)生活或配合其他民俗活動的民間藝術(shù);蘊(yùn)含了極致的數(shù)學(xué)美和豐富的傳統(tǒng)文化信息,現(xiàn)有一幅剪紙的設(shè)計圖,其中的4個小圓均過正方形的中心,且內(nèi)切于正方形的兩鄰邊.若在正方形內(nèi)隨機(jī)取一點(diǎn),則該點(diǎn)取自黑色部分的概率為( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com