(本題滿分10分)
若直線
過點(diǎn)(0,3)且與拋物線y2=2x只有一個公共點(diǎn),求該直線方程.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知橢圓
的離心率為
,右焦點(diǎn)為(
,0),斜率為1的直線
與橢圓G交與A、B兩點(diǎn),以AB為底邊作等腰三角形,頂點(diǎn)為
.
(1)求橢圓G的方程;
(2)求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知橢圓
的離心率為
,右焦點(diǎn)為
。斜率為1的直線
與橢圓
交于
兩點(diǎn),以
為底邊作等腰三角形,頂點(diǎn)為
。
(Ⅰ)求橢圓
的方程;
(Ⅱ)求
的面積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知橢圓C:
(
.![]()
(1)若橢圓的長軸長為4,離心率為
,求橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,設(shè)過定點(diǎn)
的直線
與橢圓C交于不同的兩點(diǎn)
,且
為銳角(其中
為坐標(biāo)原點(diǎn)),求直線
的斜率k的取值范圍;
(3)如圖,過原點(diǎn)
任意作兩條互相垂直的直線與橢圓
(
)相交于
四點(diǎn),設(shè)原點(diǎn)
到四邊形
一邊的距離為
,試求
時
滿足的條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓C:
的左焦點(diǎn)為F,過點(diǎn)F的直線與橢圓C相交于A,B兩點(diǎn),直線l的傾斜角為60o,
.
求橢圓C的離心率;
如果|AB|=
,求橢圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知橢圓
的離心率
,過點(diǎn)
和
的直線與原點(diǎn)的距離為
。⑴求橢圓的方程;⑵已知定點(diǎn)
,若直線
與橢圓交于
兩點(diǎn),問:是否存在
的值,使以
為直徑的圓過
點(diǎn)?請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)
,點(diǎn)
,直線
、
都是圓
的切線(
點(diǎn)不在
軸上)。
⑴求過點(diǎn)
且焦點(diǎn)在
軸上拋物線的標(biāo)準(zhǔn)方程;
⑵過點(diǎn)
作直線
與⑴中的拋物線相交于
、
兩點(diǎn),問是否存在定點(diǎn)
,使
.
為常數(shù)?若存在,求出點(diǎn)
的坐標(biāo)與常數(shù);若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分) 已知直線L:y=x+1與曲線C:
交于不同的兩點(diǎn)A,B;O為坐標(biāo)原點(diǎn)。
(1)若
,試探究在曲線C上僅存在幾個點(diǎn)到直線L的距離恰為
?并說明理由;
(2)若
,且a>b,
,試求曲線C的離心率e的取值范圍。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com