設(shè)橢圓C:
的左焦點為F,過點F的直線與橢圓C相交于A,B兩點,直線l的傾斜角為60o,
.
求橢圓C的離心率;
如果|AB|=
,求橢圓C的方程.
科目:高中數(shù)學 來源: 題型:解答題
已知曲線
上任意一點
到兩個定點
,
的距離之和為4.
(1)求曲線
的方程;
(2)設(shè)過(0,-2)的直線
與曲線
交于
兩點,且
(
為原點),求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知拋物線
:
經(jīng)過橢圓
:
的兩個焦點.設(shè)
,又
為
與
不在
軸上的兩個交點,若
的重心(中線的交點)在拋物線
上,![]()
(1)求
和
的方程.
(2)有哪幾條直線與
和
都相切?(求出公切線方程)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分13分)
已知橢圓
的兩焦點在
軸上, 且兩焦點與短軸的一個頂點的連線構(gòu)成斜邊長為2的等腰直角三角形。
(Ⅰ)求橢圓的方程;
(Ⅱ)過點
的動直線
交橢圓C于A、B兩點,試問:在坐標平面上是否存在一個定點Q,使得以AB為直徑的圓恒過點Q ?若存在求出點Q的坐標;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系中,
的兩個頂點
、
的坐標分別是(-1,0),(1,0),點
是
的重心,
軸上一點
滿足
,且
.
(1)求
的頂點
的軌跡
的方程;
(2)不過點
的直線
與軌跡
交于不同的兩點
、
,當
時,求
與
的關(guān)系,并證明直線
過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
橢圓
的左、右焦點分別為
、
,點
,
滿足
.
(1)求橢圓的離心率
;
(2)設(shè)直線
與橢圓相交于
兩點,若直線
與圓
相交于
兩點,且
,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
如圖,
為橢圓
上的一個動點,弦
、
分別過焦點
、
,當
垂直于
軸時,恰好有![]()
![]()
(Ⅰ)求橢圓的離心率;
(Ⅱ)設(shè)
.
①當
點恰為橢圓短軸的一個端點時,求
的值;
②當
點為該橢圓上的一個動點時,試判斷
是否為定值?
若是,請證明;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓
過點
,且離心率
.
(1)求橢圓
的標準方程;
(2)是否存在過點
的直線
交橢圓于不同的兩點M、N,且滿足
(其中點O為坐標原點),若存在,求出直線
的方程,若不存在,請說明理由.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com