【題目】下表是我國(guó)大陸地區(qū)從2013年至2019年國(guó)內(nèi)生產(chǎn)總值(GDP)近似值(單位:萬(wàn)億元人民幣)的數(shù)據(jù)表格:
年份 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
年份代號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
中國(guó)大陸地區(qū)GDP: (單位:萬(wàn)億元人民幣) |
|
|
|
|
|
|
|
為解釋變量,
為預(yù)報(bào)變量,若以
為回歸方程,則相關(guān)指數(shù)
;若以
為回歸方程,則相關(guān)指數(shù)
.
(1)判斷
與
哪一個(gè)更適宜作為國(guó)內(nèi)生產(chǎn)總值(GDP)近似值
關(guān)于年份代號(hào)
的回歸方程,并說(shuō)明理由;
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),求出
關(guān)于年份代號(hào)
的回歸方程(系數(shù)精確到
);
(3)黨的十九大報(bào)告中指出:從2020年到2035年,在全面建成小康社會(huì)的基礎(chǔ)上,再奮斗15年,基本實(shí)視社會(huì)主義現(xiàn)代化.若到2035年底我國(guó)人口增長(zhǎng)為
億人,假設(shè)到2035年世界主要中等發(fā)達(dá)國(guó)家的人均國(guó)民生產(chǎn)總值的頻率直方圖如圖所示.
![]()
以(2)的結(jié)論為依據(jù),預(yù)測(cè)我國(guó)在2035年底人均國(guó)民生產(chǎn)總值是否可以超過(guò)假設(shè)的2035年世界主要中等發(fā)達(dá)國(guó)家的人均國(guó)民生產(chǎn)總值平均數(shù)的估計(jì)值.
參考數(shù)據(jù):
,
.
參考公式:回歸方程
中斜率和截距的最小二乘估計(jì)公式分別為:
,
.
【答案】(1)
更適宜作為
為解釋變量
為預(yù)報(bào)變量的回歸方程.見(jiàn)解析(2)
(3)可以超過(guò)
【解析】
(1)比較
的大小,即可得到答案;
(2)利用最小二乘法即可求出回歸直線方程;
(3)先根據(jù)(2)中的回歸方程預(yù)報(bào)2035年底我國(guó)人均國(guó)民生產(chǎn)總值,再由頻率分布直方圖估計(jì)2035年底我國(guó)人均國(guó)民生產(chǎn)總值,即可得到答案;
解:(1)由
,
可得
更適宜作為
為解釋變量
為預(yù)報(bào)變量的回歸方程.
(2)
,
,
,
所以以
為解釋變量
為預(yù)報(bào)變量回歸方程為
.
(3)到2035年底對(duì)應(yīng)的年份代號(hào)為23,由(2)的回歸方程
得我國(guó)國(guó)內(nèi)生產(chǎn)總值約為
萬(wàn)億元人民幣,
又
,所以到2035年底我國(guó)人均國(guó)民生產(chǎn)總值約為
萬(wàn)元人民幣,
由直方圖,假設(shè)的2035年世界主要中等發(fā)達(dá)國(guó)家的人均國(guó)民生產(chǎn)總值平均數(shù)的估計(jì)值為:
,
又
,
所以以(2)的結(jié)論為依據(jù),可預(yù)測(cè)我國(guó)在2035年底人均國(guó)民生產(chǎn)總值可以超過(guò)假設(shè)的2035年世界主要中等發(fā)達(dá)國(guó)家的人均國(guó)民生產(chǎn)總值平均數(shù)的估計(jì)值.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知F1(﹣c,0),F2(c,0)分別為雙曲線C:
1(a>0,b>0)的左、右焦點(diǎn),直線l:
1與C交于M,N兩點(diǎn),線段MN的垂直平分線與x軸交于T(﹣5c,0),則C的離心率為( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】新型冠狀病毒肺炎正在全球蔓延,對(duì)世界經(jīng)濟(jì)影響嚴(yán)重,中國(guó)疫情防控,復(fù)工復(fù)學(xué)恢復(fù)經(jīng)濟(jì)成為各國(guó)的榜樣,綿陽(yáng)某商場(chǎng)在五一勞動(dòng)節(jié)期間舉行促銷活動(dòng),根據(jù)市場(chǎng)調(diào)查,該商場(chǎng)決定從3種服裝商品、2種家電、4種日用商品中,選出3種商品進(jìn)行促銷活動(dòng).
(1)試求選出的3種商品至少有2種服裝商品的概率;
(2)商場(chǎng)對(duì)選的A商品采用的促銷方案是有獎(jiǎng)銷售,即在該商品現(xiàn)價(jià)的基礎(chǔ)上將價(jià)格提高300元,同時(shí)允許顧客有3次抽獎(jiǎng)的機(jī)會(huì),若中獎(jiǎng),則每次中獎(jiǎng)都可獲得一定數(shù)額的獎(jiǎng)金,假設(shè)顧客每次抽獎(jiǎng)時(shí)獲獎(jiǎng)與否是等概率的,請(qǐng)問(wèn):商場(chǎng)應(yīng)將中獎(jiǎng)獎(jiǎng)金數(shù)額最高定為多少元,才能使促銷方案對(duì)自己有利?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四棱錐
,平面
⊥平面
,
是以
為斜邊的等腰直角三角形,
,
,
,
為
的中點(diǎn).
![]()
(1)證明:
;
(2)求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】經(jīng)統(tǒng)計(jì)某射擊運(yùn)動(dòng)員隨機(jī)射擊一次命中目標(biāo)的概率為
,為估計(jì)該運(yùn)動(dòng)員射擊4次恰好命中3次的概率,現(xiàn)采用隨機(jī)模擬的方法,先由計(jì)算機(jī)產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),用0,1,2表示沒(méi)有擊中,用3,4,5,6,7,8,9表示擊中,以4個(gè)隨機(jī)數(shù)為一組,代表射擊4次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了20組隨機(jī)數(shù):
9597,7424,7610,4281,7520,0293,7140,9857,0347,4373,
0371,6233,2616,8045,6011,3661,8638,7815,1457,5550.
根據(jù)以上數(shù)據(jù),則可估計(jì)該運(yùn)動(dòng)員射擊4次恰有3次命中的概率為( ).
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表是我國(guó)大陸地區(qū)從2013年至2019年國(guó)內(nèi)生產(chǎn)總值(GDP)近似值(單位:萬(wàn)億元人民幣)的數(shù)據(jù)表格:
年份 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
年份代號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
中國(guó)大陸地區(qū)GDP: (單位:萬(wàn)億元人民幣) |
|
|
|
|
|
|
|
關(guān)于
的線性回歸方程(系數(shù)精確到
);
(Ⅱ)黨的十九大報(bào)告中指出:從2020年到2035年,在全面建成小康社會(huì)的基礎(chǔ)上,再奮斗15年,基本實(shí)視社會(huì)主義現(xiàn)代化.若到2035年底我國(guó)人口增長(zhǎng)為
億人,假設(shè)到2035年世界主要中等發(fā)達(dá)國(guó)家的人均國(guó)民生產(chǎn)總值的頻率直方圖如圖所示.
![]()
以(Ⅰ)的結(jié)論為依據(jù),預(yù)測(cè)我國(guó)在2035年底人均國(guó)民生產(chǎn)總值是否可以超過(guò)假設(shè)的2035年世界主要中等發(fā)達(dá)國(guó)家的人均國(guó)民生產(chǎn)總值平均數(shù)的估計(jì)值.
參考數(shù)據(jù):
,
.
參考公式:回歸方程
中斜率和截距的最小二乘估計(jì)公式分別為:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系
中,以
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系.已知曲線
的參數(shù)方程為
(
為參數(shù),
),曲線
的極坐標(biāo)方程為
,點(diǎn)
是
與
的一個(gè)交點(diǎn),其極坐標(biāo)為
.設(shè)射線
與曲線
相交于
,
兩點(diǎn),與曲線
相交于
,
兩點(diǎn).
(1)求
,
的值;
(2)求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某省
年開(kāi)始將全面實(shí)施新高考方案.在
門選擇性考試科目中,物理、歷史這兩門科目采用原始分計(jì)分;思想政治、地理、化學(xué)、生物這4門科目采用等級(jí)轉(zhuǎn)換賦分,將每科考生的原始分從高到低劃分為
,
,
,
,
共
個(gè)等級(jí),各等級(jí)人數(shù)所占比例分別為
、
、
、
和
,并按給定的公式進(jìn)行轉(zhuǎn)換賦分.該省組織了一次高一年級(jí)統(tǒng)一考試,并對(duì)思想政治、地理、化學(xué)、生物這4門科目的原始分進(jìn)行了等級(jí)轉(zhuǎn)換賦分.
(1)某校生物學(xué)科獲得
等級(jí)的共有10名學(xué)生,其原始分及轉(zhuǎn)換分如下表:
原始分 | 91 | 90 | 89 | 88 | 87 | 85 | 83 | 82 |
轉(zhuǎn)換分 | 100 | 99 | 97 | 95 | 94 | 91 | 88 | 86 |
人數(shù) | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 1 |
現(xiàn)從這10名學(xué)生中隨機(jī)抽取3人,設(shè)這3人中生物轉(zhuǎn)換分不低于
分的人數(shù)為
,求
的分布列和數(shù)學(xué)期望;
(2)假設(shè)該省此次高一學(xué)生生物學(xué)科原始分
服從正態(tài)分布
.若
,令
,則
,請(qǐng)解決下列問(wèn)題:
①若以此次高一學(xué)生生物學(xué)科原始分
等級(jí)的最低分為實(shí)施分層教學(xué)的劃線分,試估計(jì)該劃線分大約為多少分?(結(jié)果保留為整數(shù))
②現(xiàn)隨機(jī)抽取了該省
名高一學(xué)生的此次生物學(xué)科的原始分,若這些學(xué)生的原始分相互獨(dú)立,記
為被抽到的原始分不低于
分的學(xué)生人數(shù),求
取得最大值時(shí)
的值.
附:若
,則
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年泉州市農(nóng)村電商發(fā)展迅猛,成為創(chuàng)新農(nóng)產(chǎn)品交易方式、增加農(nóng)民收入、引導(dǎo)農(nóng)業(yè)供給側(cè)結(jié)構(gòu)性改革、促進(jìn)鄉(xiāng)村振興的重要力量,成為鄉(xiāng)村振興的新引擎.2019年大學(xué)畢業(yè)的李想,選擇回到家鄉(xiāng)泉州自主創(chuàng)業(yè),他在網(wǎng)上開(kāi)了一家水果網(wǎng)店.2019年雙十一期間,為了增加水果銷量,李想設(shè)計(jì)了下面兩種促銷方案:方案一:購(gòu)買金額每滿120元,即可抽獎(jiǎng)一次,中獎(jiǎng)可獲得20元,每次中獎(jiǎng)的概率為
(
),假設(shè)每次抽獎(jiǎng)相互獨(dú)立.方案二:購(gòu)買金額不低于180元時(shí),即可優(yōu)惠
元,并在優(yōu)惠后的基礎(chǔ)上打九折.
(1)在促銷方案一中,設(shè)每10個(gè)抽獎(jiǎng)人次中恰有6人次中獎(jiǎng)的概率為
,求
的最大值點(diǎn)
;
(2)若促銷方案二中,李想每筆訂單得到的金額均不低于促銷前總價(jià)的八折,求
的最大值;
(3)以(1)中確定的
作為
的值,且當(dāng)
取最大值時(shí),若某位顧客一次性購(gòu)買了360元,則該顧客應(yīng)選擇哪種促銷方案?請(qǐng)說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com