【題目】設(shè)函數(shù)![]()
.
(Ⅰ)求函數(shù)
的單調(diào)遞增區(qū)間;
(Ⅱ)在銳角
中,若
,且能蓋住
的最小圓的面積為
,求
周長的取值范圍.
【答案】(Ⅰ)![]()
;(Ⅱ)
.
【解析】
(Ⅰ)利用誘導(dǎo)公式和降冪公式,二倍角公式以及兩角和的正弦公式逆用將函數(shù)化簡得到函數(shù)
,然后由
可得單調(diào)增區(qū)間.
(Ⅱ)能蓋住
的最小圓的面積為
,即三角形的外接圓,求出其外接圓的半徑,則由正弦定理可以求出邊
,可以用角
表示出邊
,根據(jù)角
的范圍求出其范圍即可.
(Ⅰ)因為![]()
![]()
![]()
![]()
由
,解得
,![]()
所以函數(shù)
的單調(diào)遞增區(qū)間為![]()
.
(Ⅱ)因為
,所以
.
又因為
為銳角三角形,所以
,
.
所以
,故有
.
已知能蓋住
的最小圓為
的外接圓,而其面積為
.
所以
,解得
,
的角
,
,
所對的邊分別為
,
,
.
由正弦定理
.
所以
,
,
,
![]()
![]()
由
為銳角三角形,所以
.
所以
,則
,
故
, 所以
.
故此
的周長的取值范圍為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
,
是兩條不同的直線,
,
,
是三個不同的平面.有下列四個命題:
①若
,
,
,則
; ②若
,
,則
;
③ 若
,
,
,則
;④ 若
,
,
,則
.
其中錯誤命題的序號是
A. ①③ B. ①④ C. ②③④ D. ②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列
滿足
.
(1)求
的通項公式;
(2)設(shè)等比數(shù)列
滿足
,問:
與數(shù)列
的第幾項相等?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)共有1000名學(xué)生參加了該地區(qū)高三第一次質(zhì)量檢測的數(shù)學(xué)考試,數(shù)學(xué)成績?nèi)缦卤硭荆?/span>
數(shù)學(xué)成績分組 | [0,30) | [30,60) | [60,90) | [90,120) | [120,150] |
人數(shù) | 60 | 90 | 300 | x | 160 |
(Ⅰ)為了了解同學(xué)們前段復(fù)習(xí)的得失,以便制定下階段的復(fù)習(xí)計劃,學(xué)校將采用分層抽樣的方法抽取100名同學(xué)進(jìn)行問卷調(diào)查,甲同學(xué)在本次測試中數(shù)學(xué)成績?yōu)?/span>95分,求他被抽中的概率;
(Ⅱ)作出頻率分布直方圖,并估計該學(xué)校本次考試的數(shù)學(xué)平均分.(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司欲生產(chǎn)一款迎春工藝品回饋消費者,工藝品的平面設(shè)計如圖所示,該工藝品由直角
和以
為直徑的半圓拼接而成,點
為半圈上一點(異于
,
),點
在線段
上,且滿足
.已知
,
,設(shè)
.
![]()
(1)為了使工藝禮品達(dá)到最佳觀賞效果,需滿足
,且
達(dá)到最大.當(dāng)
為何值時,工藝禮品達(dá)到最佳觀賞效果;
(2)為了工藝禮品達(dá)到最佳穩(wěn)定性便于收藏,需滿足
,且
達(dá)到最大.當(dāng)
為何值時,
取得最大值,并求該最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,面積為
的平面凸四邊形的第
條邊的邊長記為
,此四邊形內(nèi)任一點
到第
條邊的距離記為
,若
,則
.類比以上性質(zhì),體積為
的三棱錐的第
個面的面積記為
,此三棱錐內(nèi)任一點
到第
個面的距離記為
,若
,則
等于( 。
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:
(a>b>0)的離心率為
,且過點(1,
).
(1)求橢圓C的方程;
(2)設(shè)與圓O:x2+y2=
相切的直線l交橢圓C于A,B兩點,求△OAB面積的最大值,及取得最大值時直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國家射擊隊的某隊員射擊一次,命中7~10環(huán)的概率如表所示:
命中環(huán)數(shù) | 10環(huán) | 9環(huán) | 8環(huán) | 7環(huán) |
概率 | 0.32 | 0.28 | 0.18 | 0.12 |
求該射擊隊員射擊一次 求:
(1)射中9環(huán)或10環(huán)的概率;
(2)至少命中8環(huán)的概率;(3)命中不足8環(huán)的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
為定義在
上的奇函數(shù),且當(dāng)
時,
.
(1)求函數(shù)
的解析式;
(2)求實數(shù)
,使得函數(shù)
在區(qū)間
上的值域為
;
(3)若函數(shù)
在區(qū)間
上的值域為
,則記所有滿足條件的區(qū)間
的并集為
,設(shè)
,問是否存在實數(shù)
,使得集合![]()
恰含有
個元素?若存在,求出
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com